Does Explicit Prediction Matter in Deep Reinforcement Learning-Based Energy Management?

Zhaoming Qin, Huaying Zhang, Yuzhou Zhao, Hong Xie, Junwei Cao
{"title":"Does Explicit Prediction Matter in Deep Reinforcement Learning-Based Energy Management?","authors":"Zhaoming Qin, Huaying Zhang, Yuzhou Zhao, Hong Xie, Junwei Cao","doi":"10.1109/ICEI52466.2021.00009","DOIUrl":null,"url":null,"abstract":"As a model-free optimization and decision-making method, deep reinforcement learning (DRL) has been widely applied to the field of energy management in energy Internet. While, some DRL-based energy management schemes also incorporate the prediction module used by the traditional model-based methods, which seems to be unnecessary and even adverse. In this work, we implement the standard energy management scheme with prediction using supervised learning and DRL, and the counterpart without prediction using end-to-end DRL. Then, these two schemes are compared in the unified energy management framework. The simulation results demonstrate that the energy management scheme without prediction is superior over the scheme with prediction. This work intends to rectify the misuse of DRL methods in the field of energy management.","PeriodicalId":113203,"journal":{"name":"2021 IEEE International Conference on Energy Internet (ICEI)","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Energy Internet (ICEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEI52466.2021.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a model-free optimization and decision-making method, deep reinforcement learning (DRL) has been widely applied to the field of energy management in energy Internet. While, some DRL-based energy management schemes also incorporate the prediction module used by the traditional model-based methods, which seems to be unnecessary and even adverse. In this work, we implement the standard energy management scheme with prediction using supervised learning and DRL, and the counterpart without prediction using end-to-end DRL. Then, these two schemes are compared in the unified energy management framework. The simulation results demonstrate that the energy management scheme without prediction is superior over the scheme with prediction. This work intends to rectify the misuse of DRL methods in the field of energy management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
显式预测在基于深度强化学习的能量管理中重要吗?
深度强化学习(deep reinforcement learning, DRL)作为一种无模型的优化决策方法,在能源互联网的能源管理领域得到了广泛的应用。然而,一些基于drl的能源管理方案也加入了传统基于模型方法的预测模块,这似乎是不必要的,甚至是不利的。在这项工作中,我们使用监督学习和DRL实现了带有预测的标准能量管理方案,以及使用端到端DRL实现了没有预测的对应方案。然后,在统一的能源管理框架下对这两种方案进行了比较。仿真结果表明,无预测的能量管理方案优于有预测的方案。本工作旨在纠正DRL方法在能源管理领域的误用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Propagation Characteristics Analysis of Fault Transient Voltage Traveling Wave in GIL Considering External Connection A Novel Forecasting Method for Short-term Load based on TCN-GRU Model Research on Insulating Oil Gas Analysis and Fault Prediction Based on the Edge Computing Platform of the Internet of Things Analysis of Energy Internet Business Model Considering Carbon Trading A Flexible SoC Subsystem for Harmonic Measurement and Metering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1