{"title":"Modeling the behavior of the S&P 500 index: a neural network approach","authors":"M. Malliaris","doi":"10.1109/CAIA.1994.323688","DOIUrl":null,"url":null,"abstract":"The October 1987 stock market crash challenged the prevailing financial models of a random walk and led to the emergence of a new and competing model of stock price time series. This new approach supports a nonrandom underlying structure and is labeled chaotic dynamics. If a neural network can be constructed which determines market prices better than the random walk model, it would support those who claim that they have found statistical evidence that a chaotic dynamics structure underlies the market. This paper constructs a neural network which lends support to the deterministic paradigm.<<ETX>>","PeriodicalId":297396,"journal":{"name":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","volume":"167 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIA.1994.323688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The October 1987 stock market crash challenged the prevailing financial models of a random walk and led to the emergence of a new and competing model of stock price time series. This new approach supports a nonrandom underlying structure and is labeled chaotic dynamics. If a neural network can be constructed which determines market prices better than the random walk model, it would support those who claim that they have found statistical evidence that a chaotic dynamics structure underlies the market. This paper constructs a neural network which lends support to the deterministic paradigm.<>