Multipath division multiple access for 5G cellular system based on massive antennas in millimeter wave band

Wei-Han Hsiao, Chia-Chi Huang
{"title":"Multipath division multiple access for 5G cellular system based on massive antennas in millimeter wave band","authors":"Wei-Han Hsiao, Chia-Chi Huang","doi":"10.1109/ICACT.2016.7423542","DOIUrl":null,"url":null,"abstract":"Mobile communications toward the fifth generation (5G) have been popularly discussed and investigated worldwide in academia and industry. 5G, as an evolution from the previous generations, demands both high system capacity and high data rate. A novel multiple access scheme based on millimeter wave transmission and massive antennas at a base station (BS), named multipath division multiple access (MDMA), is proposed in this paper to be a future 5G possible solution. MDMA is defined here as a method to use massive antennas at BS to achieve a processing gain to suppress multiple access interference (MAI) in cellular mobile radio system. The processing gain is obtained by implementing RAKE receivers at BS. The system concept is also demonstrated by computer simulations. Moreover, it has been shown through simple but crucial analysis that the system capacity and the aggregated data throughput could be boosted up to a considerable level.","PeriodicalId":125854,"journal":{"name":"2016 18th International Conference on Advanced Communication Technology (ICACT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACT.2016.7423542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Mobile communications toward the fifth generation (5G) have been popularly discussed and investigated worldwide in academia and industry. 5G, as an evolution from the previous generations, demands both high system capacity and high data rate. A novel multiple access scheme based on millimeter wave transmission and massive antennas at a base station (BS), named multipath division multiple access (MDMA), is proposed in this paper to be a future 5G possible solution. MDMA is defined here as a method to use massive antennas at BS to achieve a processing gain to suppress multiple access interference (MAI) in cellular mobile radio system. The processing gain is obtained by implementing RAKE receivers at BS. The system concept is also demonstrated by computer simulations. Moreover, it has been shown through simple but crucial analysis that the system capacity and the aggregated data throughput could be boosted up to a considerable level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于毫米波频段海量天线的5G蜂窝系统多径分多址
面向第五代(5G)的移动通信已经在全球学术界和工业界广泛讨论和研究。5G作为前几代的演进,对系统容量和数据速率都有更高的要求。本文提出了一种基于毫米波传输和基站海量天线的新型多址方案,即多径分址多址(MDMA),这是未来5G可能的解决方案。MDMA在这里被定义为在蜂窝移动无线电系统中使用大规模天线在BS上实现处理增益以抑制多址干扰(MAI)的方法。处理增益是通过在BS上实现RAKE接收器获得的。该系统的概念也通过计算机仿真得到了验证。此外,通过简单但重要的分析表明,系统容量和汇总数据吞吐量可以提高到相当高的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DNSNA: DNS name autoconfiguration for Internet of Things devices A novel multi-carrier waveform with high spectral efficiency: Semi-orthogonal frequency division multiplexing Adaptive spectral co-clustering for multiview data Efficient Doppler mitigation for high-speed rail communications Supply and demand management system based on consumption pattern analysis and tariff for cost minimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1