Recognition of Off-Line Handwritten Arabic Words Using Neural Network

S. Al-Maadeed
{"title":"Recognition of Off-Line Handwritten Arabic Words Using Neural Network","authors":"S. Al-Maadeed","doi":"10.1109/GMAI.2006.43","DOIUrl":null,"url":null,"abstract":"Neural network (NN) has been used with some success in recognizing printed Arabic words. In this paper, a complete scheme for unconstrained Arabic handwritten word recognition based on a neural network is proposed and discussed. The overall engine of this combination of a global feature scheme with a NN is a system able to classify Arabic-handwritten words of one hundred different writers. The system first attempts to remove some of the variation in the images that do not affect the identity of the handwritten word. Next, the system codes the skeleton and edge of the word so that feature information about the strokes in the skeleton is extracted. Then, a classification process based on the artificial NN classifier is used as global recognition engine, to classify the Arabic words. The output is a word in the dictionary. A detailed experiment is carried out, and successful recognition results are reported","PeriodicalId":438098,"journal":{"name":"Geometric Modeling and Imaging--New Trends (GMAI'06)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric Modeling and Imaging--New Trends (GMAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GMAI.2006.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Neural network (NN) has been used with some success in recognizing printed Arabic words. In this paper, a complete scheme for unconstrained Arabic handwritten word recognition based on a neural network is proposed and discussed. The overall engine of this combination of a global feature scheme with a NN is a system able to classify Arabic-handwritten words of one hundred different writers. The system first attempts to remove some of the variation in the images that do not affect the identity of the handwritten word. Next, the system codes the skeleton and edge of the word so that feature information about the strokes in the skeleton is extracted. Then, a classification process based on the artificial NN classifier is used as global recognition engine, to classify the Arabic words. The output is a word in the dictionary. A detailed experiment is carried out, and successful recognition results are reported
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的离线手写阿拉伯语单词识别
神经网络(NN)在识别印刷阿拉伯文字方面取得了一定的成功。本文提出并讨论了一种基于神经网络的无约束阿拉伯手写体单词识别的完整方案。将全局特征方案与神经网络相结合的整体引擎是一个能够对100位不同作者的阿拉伯手写单词进行分类的系统。该系统首先尝试去除图像中不影响手写单词身份的一些变化。接下来,系统对单词的骨架和边缘进行编码,提取骨架中笔画的特征信息。然后,利用基于人工神经网络分类器的分类过程作为全局识别引擎,对阿拉伯语单词进行分类。输出是字典中的一个单词。进行了详细的实验,并取得了成功的识别结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Joint Distribution Approach for Audio Signal Discrimination Arabic Character Recognition using Modified Fourier Spectrum (MFS) Virtual Multiresolution Screen Space Errors: Hierarchical Level-of-Detail (HLOD) Refinement Through Hardware Occlusion Queries Clustering Approach to Content Based Image Retrieval Visualization of Temporal-Oriented Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1