Motif-Based Exploratory Data Analysis for State-Backed Platform Manipulation on Twitter

Khuzaima Hameed, Rob Johnston, Brent Younce, Minh Tang, Alyson Wilson
{"title":"Motif-Based Exploratory Data Analysis for State-Backed Platform Manipulation on Twitter","authors":"Khuzaima Hameed, Rob Johnston, Brent Younce, Minh Tang, Alyson Wilson","doi":"10.1609/icwsm.v17i1.22148","DOIUrl":null,"url":null,"abstract":"State-backed platform manipulation (SBPM) on Twitter has been a prominent public issue since the 2016 US election cycle. Identifying and characterizing users on Twitter as belonging to a state-backed campaign is an important part of mitigating their influence. In this paper, we propose a novel time series feature grounded in social science to characterize dynamic user networks on Twitter. We introduce a classification approach, motif functional data analysis (MFDA), that captures the evolution of motifs in temporal networks, which is a useful feature for analyzing malign influence. We evaluate MFDA on data from known SBPM campaigns on Twitter and representative authentic data and compare performance to other classification methods. To further leverage our dynamic feature, we use the changes in network structure captured by motifs to help uncover real-world events using anomaly detection.","PeriodicalId":175641,"journal":{"name":"International Conference on Web and Social Media","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v17i1.22148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

State-backed platform manipulation (SBPM) on Twitter has been a prominent public issue since the 2016 US election cycle. Identifying and characterizing users on Twitter as belonging to a state-backed campaign is an important part of mitigating their influence. In this paper, we propose a novel time series feature grounded in social science to characterize dynamic user networks on Twitter. We introduce a classification approach, motif functional data analysis (MFDA), that captures the evolution of motifs in temporal networks, which is a useful feature for analyzing malign influence. We evaluate MFDA on data from known SBPM campaigns on Twitter and representative authentic data and compare performance to other classification methods. To further leverage our dynamic feature, we use the changes in network structure captured by motifs to help uncover real-world events using anomaly detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主题的Twitter国家支持平台操纵探索性数据分析
自2016年美国大选周期以来,推特上国家支持的平台操纵(sppm)一直是一个突出的公共问题。识别Twitter上的用户并将其定性为属于政府支持的活动,是减轻其影响力的重要组成部分。在本文中,我们提出了一个基于社会科学的新颖时间序列特征来表征Twitter上的动态用户网络。我们介绍了一种分类方法,基序功能数据分析(MFDA),它捕捉了基序在时间网络中的演变,这是分析恶性影响的一个有用特征。我们对Twitter上已知的SBPM活动数据和具有代表性的真实数据进行了MFDA评估,并将性能与其他分类方法进行了比较。为了进一步利用我们的动态特性,我们使用由motif捕获的网络结构的变化来使用异常检测来帮助发现现实世界的事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RTANet: Recommendation Target-Aware Network Embedding Who Is behind a Trend? Temporal Analysis of Interactions among Trend Participants on Twitter Host-Centric Social Connectedness of Migrants in Europe on Facebook Recipe Networks and the Principles of Healthy Food on the Web Social Influence-Maximizing Group Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1