A Socio-Temporal Cache Prefetching Policy for the Multi-access Edge Computing Architecture

Cleomar Márcio Marques de Oliveira, I. Moraes, C. Albuquerque, José Jerônimo de Menezes Lima
{"title":"A Socio-Temporal Cache Prefetching Policy for the Multi-access Edge Computing Architecture","authors":"Cleomar Márcio Marques de Oliveira, I. Moraes, C. Albuquerque, José Jerônimo de Menezes Lima","doi":"10.1109/LATINCOM56090.2022.10000591","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a cache prefetching policy for the Multi-access Edge Computing architecture (MEC) that considers the temporal and social behaviors of mobile users. The key point of our policy is to prefetch new contents based on the popularity of their categories and not on the popularity of each content individually. Our goal is to increase the Quality of Experience (QoE) of mobile users by increasing the cache hit ratio. Simulation results show that HASSAN provides a hit ratio up to 65% for a cache size of 16 MB.","PeriodicalId":221354,"journal":{"name":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM56090.2022.10000591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a cache prefetching policy for the Multi-access Edge Computing architecture (MEC) that considers the temporal and social behaviors of mobile users. The key point of our policy is to prefetch new contents based on the popularity of their categories and not on the popularity of each content individually. Our goal is to increase the Quality of Experience (QoE) of mobile users by increasing the cache hit ratio. Simulation results show that HASSAN provides a hit ratio up to 65% for a cache size of 16 MB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种面向多访问边缘计算架构的社会时序缓存预取策略
在本文中,我们提出了一种考虑移动用户的时间和社会行为的多访问边缘计算架构(MEC)的缓存预取策略。我们策略的重点是根据类别的受欢迎程度预取新内容,而不是根据每个内容单独的受欢迎程度。我们的目标是通过提高缓存命中率来提高移动用户的体验质量(QoE)。仿真结果表明,当缓存大小为16 MB时,HASSAN提供了高达65%的命中率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-band Optical Network Assisted by GNPy: an Experimental Demonstration A Stacked Ensemble Classifier for an Intrusion Detection System in the Edge of IoT and IIoT Networks A Novel Short-term Vehicle Location Prediction using Temporal Graph Neural Networks LATINCOM 2022 Message from the General Chairs LATINCOM 2022 TOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1