Workflow Automation in Liquid Chromatography Mass Spectrometry

R. Gentz, H. Martín, Edward Baidoo, S. Peisert
{"title":"Workflow Automation in Liquid Chromatography Mass Spectrometry","authors":"R. Gentz, H. Martín, Edward Baidoo, S. Peisert","doi":"10.1109/eScience.2019.00095","DOIUrl":null,"url":null,"abstract":"We describe the fully automated workflow path developed for the ingest and analysis of liquid chromatography mass spectrometry (LCMS) data. With the help of this computational workflow, we were able to replace two human work days to analyze data with two hours of unsupervised computation time. In addition, this tool also can compute confidence intervals for all its results, based on the noise level present in the data. We leverage only open source tools and libraries in this workflow.","PeriodicalId":142614,"journal":{"name":"2019 15th International Conference on eScience (eScience)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on eScience (eScience)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2019.00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We describe the fully automated workflow path developed for the ingest and analysis of liquid chromatography mass spectrometry (LCMS) data. With the help of this computational workflow, we were able to replace two human work days to analyze data with two hours of unsupervised computation time. In addition, this tool also can compute confidence intervals for all its results, based on the noise level present in the data. We leverage only open source tools and libraries in this workflow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液相色谱-质谱分析中的工作流程自动化
我们描述了为液相色谱质谱(LCMS)数据的摄取和分析开发的全自动工作流程路径。在这个计算工作流程的帮助下,我们能够用两个小时的无监督计算时间取代两个工作日来分析数据。此外,该工具还可以根据数据中存在的噪声水平计算其所有结果的置信区间。我们在这个工作流中只利用开源工具和库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Scientific Discovery with SCAIGATE Science Gateway Contextual Linking between Workflow Provenance and System Performance Logs BBBlockchain: Blockchain-Based Participation in Urban Development Streaming Workflows on Edge Devices to Process Sensor Data on a Smart Manufacturing Platform Serverless Science for Simple, Scalable, and Shareable Scholarship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1