{"title":"Semi-supervised Learning Framework for Cross-Lingual Projection","authors":"PengLong Hu, Mo Yu, Jing Li, Conghui Zhu, T. Zhao","doi":"10.1109/WI-IAT.2011.58","DOIUrl":null,"url":null,"abstract":"Cross-lingual projection encounters two major challenges, the noise from word-alignment error and the syntactic divergences between two languages. To solve these two problems, a semi-supervised learning framework of cross-lingual projection is proposed to get better annotations using parallel data. Moreover, a projection model is introduced to model the projection process of labeling from the resource-rich language to the resource-scarce language. The projection model, together with the traditional target model of cross-lingual projection, can be seen as two views of parallel data. Utilizing these two views, an extension of co-training algorithm to structured predictions is designed to boost the result of the two models. Experiments show that the proposed cross-lingual projection method improves the accuracy in the task of POS-tagging projection. And using only one-to-one alignments proves to lead to more accurate results than using all kinds of alignment information.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Cross-lingual projection encounters two major challenges, the noise from word-alignment error and the syntactic divergences between two languages. To solve these two problems, a semi-supervised learning framework of cross-lingual projection is proposed to get better annotations using parallel data. Moreover, a projection model is introduced to model the projection process of labeling from the resource-rich language to the resource-scarce language. The projection model, together with the traditional target model of cross-lingual projection, can be seen as two views of parallel data. Utilizing these two views, an extension of co-training algorithm to structured predictions is designed to boost the result of the two models. Experiments show that the proposed cross-lingual projection method improves the accuracy in the task of POS-tagging projection. And using only one-to-one alignments proves to lead to more accurate results than using all kinds of alignment information.