Variational Parameter Optimization of Quantum-classical Hybrid Heuristics on Near-term Quantum Computer

T. Miki, D. Tsukayama, R. Okita, M. Shimada, J. Shirakashi
{"title":"Variational Parameter Optimization of Quantum-classical Hybrid Heuristics on Near-term Quantum Computer","authors":"T. Miki, D. Tsukayama, R. Okita, M. Shimada, J. Shirakashi","doi":"10.1109/3M-NANO56083.2022.9941666","DOIUrl":null,"url":null,"abstract":"Currently available quantum processors are noisy intermediate-scale quantum (NISQ) devices. The variational quantum eigensolver (VQE) is an algorithm that is closer to near-term applicability due to lower quantum hardware requirements. In VQE, trial states with variational parameters are prepared by quantum computers, and the optimal parameters are determined by a classical optimizer. This optimization is known to be an NP-hard problem. In this work, we make a comparison between various gradient-free optimizers in terms of approximation ratio and function evaluations. As a result, we find that COBYLA method is the best to find the approximated solution with a lower number of executions of quantum computers.","PeriodicalId":370631,"journal":{"name":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO56083.2022.9941666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently available quantum processors are noisy intermediate-scale quantum (NISQ) devices. The variational quantum eigensolver (VQE) is an algorithm that is closer to near-term applicability due to lower quantum hardware requirements. In VQE, trial states with variational parameters are prepared by quantum computers, and the optimal parameters are determined by a classical optimizer. This optimization is known to be an NP-hard problem. In this work, we make a comparison between various gradient-free optimizers in terms of approximation ratio and function evaluations. As a result, we find that COBYLA method is the best to find the approximated solution with a lower number of executions of quantum computers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近期量子计算机上量子-经典混合启发式变分参数优化
目前可用的量子处理器是有噪声的中尺度量子(NISQ)器件。变分量子特征求解器(VQE)是一种更接近近期适用性的算法,因为它对量子硬件的要求较低。在VQE中,由量子计算机制备具有变分参数的试态,并通过经典优化器确定最优参数。这种优化是一个np困难问题。在这项工作中,我们对各种无梯度优化器在近似比率和函数评估方面进行了比较。结果表明,COBYLA方法能够以较少的量子计算机执行次数找到近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Buffer Solution and Concentration on AFM Imaging of DNA Molecules Electrochemical Dissolution Behavior of GH4169 and K418 Superalloy in NaNO3 Solution at Low Current Density A Stiffness-tunable MEMS Accelerometer with In-operation Drift Compensation Kinematic Calibration in Local Assembly Space of a Six-axis Industrial Robot for Precise Assembly Design and Analysis of Novel Millimetre-level Compliant Constant-force Mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1