A Comprehensive Survey of Intrusion Detection Systems using Advanced Technologies

Parthiban Aravamudhan, T. Kanimozhi
{"title":"A Comprehensive Survey of Intrusion Detection Systems using Advanced Technologies","authors":"Parthiban Aravamudhan, T. Kanimozhi","doi":"10.1109/ICECA55336.2022.10009488","DOIUrl":null,"url":null,"abstract":"Today, every IT business uses Cloud Computing since it's scalable and versatile. Its open and distributed nature makes security and privacy a big problem due to intruders. The Internet of Things (IoT) will impact many aspects of our lives due to its rapid development in household appliances, wearable technology, and intelligent sensors. IoT devices are connected, widespread, and low-powered. By 2020, there will be 50 billion Internet of Things (IoT) devices in use worldwide. There have been more IoT-based cyberattacks as a result of the growth of IoT devices, which now easily outweigh desktop PCs. To solve this challenge, new approaches must be developed for spotting assaults from hacked IoT devices. In this regard, machine learning and deep learning should be used as a detective control against IoT attacks. In addition to an introduction of intrusion detection methods, this paper analyses the technologies, protocols, and architecture of IoT networks and reviews the dangers of hacked IoT devices. This study examines methods for recognizing IoT cyberattacks using deep learning and machine learning. Various optimizer algorithms are discussed to improve the quality, efficiency and accuracy of the model.","PeriodicalId":356949,"journal":{"name":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA55336.2022.10009488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Today, every IT business uses Cloud Computing since it's scalable and versatile. Its open and distributed nature makes security and privacy a big problem due to intruders. The Internet of Things (IoT) will impact many aspects of our lives due to its rapid development in household appliances, wearable technology, and intelligent sensors. IoT devices are connected, widespread, and low-powered. By 2020, there will be 50 billion Internet of Things (IoT) devices in use worldwide. There have been more IoT-based cyberattacks as a result of the growth of IoT devices, which now easily outweigh desktop PCs. To solve this challenge, new approaches must be developed for spotting assaults from hacked IoT devices. In this regard, machine learning and deep learning should be used as a detective control against IoT attacks. In addition to an introduction of intrusion detection methods, this paper analyses the technologies, protocols, and architecture of IoT networks and reviews the dangers of hacked IoT devices. This study examines methods for recognizing IoT cyberattacks using deep learning and machine learning. Various optimizer algorithms are discussed to improve the quality, efficiency and accuracy of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用先进技术的入侵检测系统综述
如今,每个IT企业都在使用云计算,因为它具有可扩展性和多功能性。它的开放和分布式特性使其由于入侵者而成为安全和隐私的大问题。由于物联网(IoT)在家用电器、可穿戴技术和智能传感器方面的快速发展,它将影响我们生活的许多方面。物联网设备是连接的、广泛的、低功耗的。到2020年,全球将有500亿个物联网(IoT)设备投入使用。由于物联网设备的增长,基于物联网的网络攻击越来越多,现在物联网设备已经轻松超过台式电脑。为了解决这一挑战,必须开发新的方法来发现来自被黑客入侵的物联网设备的攻击。在这方面,应该使用机器学习和深度学习作为对物联网攻击的检测控制。除了介绍入侵检测方法外,本文还分析了物联网网络的技术、协议和架构,并回顾了被黑客入侵的物联网设备的危险。本研究探讨了使用深度学习和机器学习识别物联网网络攻击的方法。讨论了各种优化算法,以提高模型的质量、效率和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Objective Artificial Flora Algorithm Based Optimal Handover Scheme for LTE-Advanced Networks Named Entity Recognition using CRF with Active Learning Algorithm in English Texts FPGA Implementation of Lattice-Wave Half-Order Digital Integrator using Radix-$2^{r}$ Digit Recoding Green Cloud Computing- Next Step Towards Eco-friendly Work Stations Diabetes Prediction using Support Vector Machine, Naive Bayes and Random Forest Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1