Bio-Inspired Metaheuristic Optimization Algorithms for Biomarker Identification in Mass Spectrometry Analysis

Syarifah Adilah Mohamed Yusoff, Ibrahim Venkat, U. K. Yusof, R. Abdullah
{"title":"Bio-Inspired Metaheuristic Optimization Algorithms for Biomarker Identification in Mass Spectrometry Analysis","authors":"Syarifah Adilah Mohamed Yusoff, Ibrahim Venkat, U. K. Yusof, R. Abdullah","doi":"10.4018/jncr.2012040104","DOIUrl":null,"url":null,"abstract":"Mass spectrometry is an emerging technique that is continuously gaining momentum among bioinformatics researchers who intend to study biological or chemical properties of complex structures such as protein sequences. This advancement also embarks in the discovery of proteomic biomarkers through accessible body fluids such as serum, saliva, and urine. Recently, literature reveals that sophisticated computational techniques mimetic survival and natural processes adapted from biological life for reasoning voluminous mass spectrometry data yields promising results. Such advanced approaches can provide efficient ways to mine mass spectrometry data in order to extract parsimonious features that represent vital information, specifically in discovering disease-related protein patterns in complex proteins sequences. This article intends to provide a systematic survey on bio-inspired approaches for feature subset selection via mass spectrometry data for biomarker analysis.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jncr.2012040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Mass spectrometry is an emerging technique that is continuously gaining momentum among bioinformatics researchers who intend to study biological or chemical properties of complex structures such as protein sequences. This advancement also embarks in the discovery of proteomic biomarkers through accessible body fluids such as serum, saliva, and urine. Recently, literature reveals that sophisticated computational techniques mimetic survival and natural processes adapted from biological life for reasoning voluminous mass spectrometry data yields promising results. Such advanced approaches can provide efficient ways to mine mass spectrometry data in order to extract parsimonious features that represent vital information, specifically in discovering disease-related protein patterns in complex proteins sequences. This article intends to provide a systematic survey on bio-inspired approaches for feature subset selection via mass spectrometry data for biomarker analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质谱分析中生物标志物鉴定的启发式优化算法
质谱法是一种新兴技术,在生物信息学研究人员中不断获得动力,他们打算研究复杂结构(如蛋白质序列)的生物或化学性质。这一进展还开始于通过可获得的体液(如血清、唾液和尿液)发现蛋白质组学生物标志物。最近,文献显示,复杂的计算技术模拟了生存和自然过程,适应于生物生命,用于推理大量质谱数据产生了有希望的结果。这种先进的方法可以为挖掘质谱数据提供有效的方法,以便提取代表重要信息的简约特征,特别是在复杂蛋白质序列中发现与疾病相关的蛋白质模式。本文旨在对生物标记物分析中基于质谱数据的特征子集选择方法进行系统的综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights Into Incorporating Trustworthiness and Ethics in AI Systems With Explainable AI Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning Natural Computing of Human Facial Emotion Using Multi-Learning Fuzzy Approach Detection of Small Oranges Using YOLO v3 Feature Pyramid Mechanism Performance Parameter Evaluation of 7nm FinFET by Tuning Metal Work Function and High K Dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1