What Do You Want From Me? Adapting Systems to the Uncertainty of Human Preferences

Carlos Gavidia-Calderon, A. Bennaceur, Anastasia Kordoni, Mark Levine, B. Nuseibeh
{"title":"What Do You Want From Me? Adapting Systems to the Uncertainty of Human Preferences","authors":"Carlos Gavidia-Calderon, A. Bennaceur, Anastasia Kordoni, Mark Levine, B. Nuseibeh","doi":"10.1145/3510455.3512791","DOIUrl":null,"url":null,"abstract":"Autonomous systems, like drones and self-driving cars, are becoming part of our daily lives. Multiple people interact with them, each with their own expectations regarding system behaviour. To adapt system behaviour to human preferences, we propose and explore a game-theoretic approach. In our architecture, autonomous systems use sensor data to build game-theoretic models of their interaction with humans. In these models, we represent human preferences with types and a probability distribution over them. Game-theoretic analysis then outputs a strategy, that determines how the system should act to maximise utility, given its beliefs over human types. We showcase our approach in a search-and-rescue (SAR) scenario, with a robot in charge of locating victims. According to social psychology, depending on their identity some people are keen to help others, while some prioritise their personal safety. These social identities define what a person favours, so we can map them directly to game-theoretic types. We show that our approach enables a SAR robot to take advantage of human collaboration, outperforming non-adaptive configurations in average number of successful evacuations. CCS CONCEPTS • Computer systems organization $\\rightarrow$Robotics; • Human- centered computing $\\rightarrow$Collaborative interaction. ACM Reference Format: Carlos Gavidia-Calderon, Amel Bennaceur, Anastasia Kordoni, Mark Levine, and Bashar Nuseibeh. 2022. What Do You Want From Me? Adapting Systems to the Uncertainty of Human Preferences. In New Ideas and Emerging Results (ICSE-NIER’22), May 21-29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3510455.3512791","PeriodicalId":416186,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510455.3512791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Autonomous systems, like drones and self-driving cars, are becoming part of our daily lives. Multiple people interact with them, each with their own expectations regarding system behaviour. To adapt system behaviour to human preferences, we propose and explore a game-theoretic approach. In our architecture, autonomous systems use sensor data to build game-theoretic models of their interaction with humans. In these models, we represent human preferences with types and a probability distribution over them. Game-theoretic analysis then outputs a strategy, that determines how the system should act to maximise utility, given its beliefs over human types. We showcase our approach in a search-and-rescue (SAR) scenario, with a robot in charge of locating victims. According to social psychology, depending on their identity some people are keen to help others, while some prioritise their personal safety. These social identities define what a person favours, so we can map them directly to game-theoretic types. We show that our approach enables a SAR robot to take advantage of human collaboration, outperforming non-adaptive configurations in average number of successful evacuations. CCS CONCEPTS • Computer systems organization $\rightarrow$Robotics; • Human- centered computing $\rightarrow$Collaborative interaction. ACM Reference Format: Carlos Gavidia-Calderon, Amel Bennaceur, Anastasia Kordoni, Mark Levine, and Bashar Nuseibeh. 2022. What Do You Want From Me? Adapting Systems to the Uncertainty of Human Preferences. In New Ideas and Emerging Results (ICSE-NIER’22), May 21-29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3510455.3512791
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
你想从我这里得到什么?使系统适应人类偏好的不确定性
无人机和自动驾驶汽车等自主系统正在成为我们日常生活的一部分。许多人与它们交互,每个人对系统行为都有自己的期望。为了使系统行为适应人类的偏好,我们提出并探索了一种博弈论方法。在我们的架构中,自主系统使用传感器数据来建立它们与人类互动的博弈论模型。在这些模型中,我们用类型和它们的概率分布来表示人类偏好。博弈论分析然后输出一个策略,该策略决定了系统应该如何行动以最大化效用,考虑到它对人类类型的信念。我们在一个搜索与救援(SAR)场景中展示了我们的方法,其中一个机器人负责定位受害者。根据社会心理学,根据他们的身份,有些人热衷于帮助别人,而有些人则优先考虑自己的人身安全。这些社会身份定义了一个人的喜好,因此我们可以将它们直接映射为博弈论类型。我们表明,我们的方法使SAR机器人能够利用人类协作,在平均成功疏散次数方面优于非自适应配置。CCS CONCEPTS•计算机系统组织$\right row$Robotics;•以人为本的计算$\右箭头$协作交互。ACM参考格式:Carlos Gavidia-Calderon, Amel Bennaceur, Anastasia Kordoni, Mark Levine和Bashar Nuseibeh。2022。你想从我这里得到什么?使系统适应人类偏好的不确定性。新思想和新成果(ICSE-NIER ' 22), 2022年5月21-29日,美国宾夕法尼亚州匹兹堡。ACM,纽约,美国,5页。https://doi.org/10.1145/3510455.3512791
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating User Perceptions of Conversational Agents for Software-related ExploratoryWeb Search Black Box Technique to Reduce Energy Consumption of Android Apps Utilizing Persistence for Post Facto Suppression of Invalid Anomalies Using System Logs Statistical Reasoning About Programs Title Page iii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1