{"title":"On the Power of Border of Depth-3 Arithmetic Circuits","authors":"Mrinal Kumar","doi":"10.1145/3371506","DOIUrl":null,"url":null,"abstract":"We show that over the field of complex numbers, every homogeneous polynomial of degree d can be approximated (in the border complexity sense) by a depth-3 arithmetic circuit of top fan-in at most 2. This is quite surprising, since there exist homogeneous polynomials P on n variables of degree 2, such that any depth-3 arithmetic circuit computing P must have top fan-in at least Ω (n). As an application, we get a new tradeoff between the top fan-in and formal degree in an approximate analog of the celebrated depth reduction result of Gupta, Kamath, Kayal, and Saptharishi [7, 10]. Formally, we show that if a degree d homogeneous polynomial P can be computed by an arithmetic circuit of size s ≥ d, then for every t ≤ d, P is in the border of a depth-3 circuit of top fan-in sO(t) and formal degree sO(d/t). To the best of our knowledge, the upper bound on the top fan-in in the original proof of Reference [7] is always at least sΩ (√d), regardless of the formal degree.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3371506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We show that over the field of complex numbers, every homogeneous polynomial of degree d can be approximated (in the border complexity sense) by a depth-3 arithmetic circuit of top fan-in at most 2. This is quite surprising, since there exist homogeneous polynomials P on n variables of degree 2, such that any depth-3 arithmetic circuit computing P must have top fan-in at least Ω (n). As an application, we get a new tradeoff between the top fan-in and formal degree in an approximate analog of the celebrated depth reduction result of Gupta, Kamath, Kayal, and Saptharishi [7, 10]. Formally, we show that if a degree d homogeneous polynomial P can be computed by an arithmetic circuit of size s ≥ d, then for every t ≤ d, P is in the border of a depth-3 circuit of top fan-in sO(t) and formal degree sO(d/t). To the best of our knowledge, the upper bound on the top fan-in in the original proof of Reference [7] is always at least sΩ (√d), regardless of the formal degree.