The reconstruction of digital holograms on a computational grid

J. Nebrensky, P. Hobson
{"title":"The reconstruction of digital holograms on a computational grid","authors":"J. Nebrensky, P. Hobson","doi":"10.1117/12.677160","DOIUrl":null,"url":null,"abstract":"Digital holography is greatly extending the range of holography's applications and moving it from the lab into the field: a single CCD or other solid-state sensor can capture any number of holograms while numerical reconstruction within a computer eliminates the need for chemical development and readily allows further processing and visualisation of the holographic image. The steady increase in sensor pixel count leads to the possibilities of larger sample volumes, while smaller-area pixels enable the practical use of digital off-axis holography. However this increase in pixel count also drives a corresponding expansion of the computational effort needed to numerically reconstruct such holograms to an extent where the reconstruction process for a single depth slice takes significantly longer than the capture process for each single hologram. Grid computing - arecent innovation in large-scale distributed processing - provides a convenient means of harnessing significant computing resources in an ad-hoc fashion that might match the field deployment of a holographic instrument. We describe here the reconstruction of digital holograms on a trans-national computational Grid with over 10 000 nodes available at over 100 sites. A simplistic scheme of deployment was found to provide no computational advantage over a single powerful workstation. Based on these experiences we suggest an improved strategy for workflow and job execution for the replay of digital holograms on a Grid.","PeriodicalId":266048,"journal":{"name":"International Conference on Holography, Optical Recording, and Processing of Information","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Holography, Optical Recording, and Processing of Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.677160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Digital holography is greatly extending the range of holography's applications and moving it from the lab into the field: a single CCD or other solid-state sensor can capture any number of holograms while numerical reconstruction within a computer eliminates the need for chemical development and readily allows further processing and visualisation of the holographic image. The steady increase in sensor pixel count leads to the possibilities of larger sample volumes, while smaller-area pixels enable the practical use of digital off-axis holography. However this increase in pixel count also drives a corresponding expansion of the computational effort needed to numerically reconstruct such holograms to an extent where the reconstruction process for a single depth slice takes significantly longer than the capture process for each single hologram. Grid computing - arecent innovation in large-scale distributed processing - provides a convenient means of harnessing significant computing resources in an ad-hoc fashion that might match the field deployment of a holographic instrument. We describe here the reconstruction of digital holograms on a trans-national computational Grid with over 10 000 nodes available at over 100 sites. A simplistic scheme of deployment was found to provide no computational advantage over a single powerful workstation. Based on these experiences we suggest an improved strategy for workflow and job execution for the replay of digital holograms on a Grid.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在计算网格上重建数字全息图
数字全息术极大地扩展了全息术的应用范围,并将其从实验室转移到现场:单个CCD或其他固态传感器可以捕获任意数量的全息图,而计算机中的数字重建消除了化学显影的需要,并且很容易允许进一步处理和可视化全息图像。传感器像素数的稳定增加导致更大样本量的可能性,而更小的面积像素使数字离轴全息术的实际使用成为可能。然而,像素数的增加也导致了数字重建全息图所需的计算量的相应增加,以至于单个深度切片的重建过程比每个单个全息图的捕获过程花费的时间要长得多。网格计算——大规模分布式处理领域的一项最新创新——提供了一种方便的方法,以一种特别的方式利用重要的计算资源,这种方式可能与全息仪器的现场部署相匹配。我们在这里描述了数字全息图在一个跨国计算网格上的重建,在100多个站点上有超过10000个节点可用。一个简单的部署方案被发现不能提供比单个强大工作站更大的计算优势。基于这些经验,我们提出了一种改进的网格上数字全息图重放的工作流程和工作执行策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D behaviour of photopolymers as holographic recording material Spectral analysis of shrinkage in holographic materials suitable for optical storage applications Analysis of amplitude and phase coupling in volume holography Replay at optical communications wavelengths of holographic gratings recorded in the visible The holographic recording in photopolymer by excitation forbidden singlet-triplet transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1