{"title":"Analysis and simulation of algorithms for vital signs detection using UWB radars","authors":"M. Baldi, F. Chiaraluce, B. Zanaj, Matteo Moretti","doi":"10.1109/ICUWB.2011.6058859","DOIUrl":null,"url":null,"abstract":"We discuss some theoretical models for vital signs monitoring by using a UWB radar. Focusing attention on the respiration and heartbeat signals, we show the impact of relevant parameters, like the sampling time interval, on the ability to extract the desired signal parameters from the waveforms elaborated at the receiver. The role of the UWB pulse shape is also highlighted. With reference to more refined methods based on signal correlation, we propose a variant that does not need the availability of a locally generated reference signal and achieves good resolution for the movement detection, while ensuring limited processing times.","PeriodicalId":143107,"journal":{"name":"2011 IEEE International Conference on Ultra-Wideband (ICUWB)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Ultra-Wideband (ICUWB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUWB.2011.6058859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We discuss some theoretical models for vital signs monitoring by using a UWB radar. Focusing attention on the respiration and heartbeat signals, we show the impact of relevant parameters, like the sampling time interval, on the ability to extract the desired signal parameters from the waveforms elaborated at the receiver. The role of the UWB pulse shape is also highlighted. With reference to more refined methods based on signal correlation, we propose a variant that does not need the availability of a locally generated reference signal and achieves good resolution for the movement detection, while ensuring limited processing times.