Analysis of CNN Digit Classifier Parameters

R. Thakur, S. Chatterjee, R. N. Yadav, Lalita Gupta
{"title":"Analysis of CNN Digit Classifier Parameters","authors":"R. Thakur, S. Chatterjee, R. N. Yadav, Lalita Gupta","doi":"10.1109/ASIANCON55314.2022.9909081","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNN’s) are widely being used for various image processing applications such as denoising, classification, de-hazing and super-resolution. In this paper, CNN image classifier to classify the digits is designed with the convolutional units, batch normalization units and the rectified linear units. The classification accuracy variation by changing different CNN parameters such as learning rate, convolutional filters, convolutional layers and training images is being analyzed. The accuracy saturates or degrades with the increment in number of convolutional layers. Selection of number of filters and learning rate are important hyper parameters impacting classifier accuracy.","PeriodicalId":429704,"journal":{"name":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASIANCON55314.2022.9909081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional Neural Networks (CNN’s) are widely being used for various image processing applications such as denoising, classification, de-hazing and super-resolution. In this paper, CNN image classifier to classify the digits is designed with the convolutional units, batch normalization units and the rectified linear units. The classification accuracy variation by changing different CNN parameters such as learning rate, convolutional filters, convolutional layers and training images is being analyzed. The accuracy saturates or degrades with the increment in number of convolutional layers. Selection of number of filters and learning rate are important hyper parameters impacting classifier accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN数字分类器参数分析
卷积神经网络(CNN)被广泛用于各种图像处理应用,如去噪、分类、去雾化和超分辨率。本文采用卷积单元、批处理归一化单元和整流线性单元设计CNN图像分类器对数字进行分类。分析了不同CNN参数(学习率、卷积滤波器、卷积层数和训练图像)对分类准确率的影响。随着卷积层数的增加,精度趋于饱和或降低。滤波器数量的选择和学习率是影响分类器准确率的重要超参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distributed Multi-Sensor DCNN & Multivariate Time Series Classification Based technique for Earthquake early warning Cross Technology Communication between LTE-U and Wi-Fi to Improve Overall QoS of 5G System Prediction of Ayurvedic Herbs for Specific Diseases by Classification Techniques in Machine Learning Face Mask Detection Using Machine Learning Techniques Closed-form BER Expressions of QPSK Modulation over NOMA-PNC Parallel Relay Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1