From partial shape matching through local deformation to robust global shape similarity for object detection

Tianyang Ma, Longin Jan Latecki
{"title":"From partial shape matching through local deformation to robust global shape similarity for object detection","authors":"Tianyang Ma, Longin Jan Latecki","doi":"10.1109/CVPR.2011.5995591","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel framework for contour based object detection. Compared to previous work, our contribution is three-fold. 1) A novel shape matching scheme suitable for partial matching of edge fragments. The shape descriptor has the same geometric units as shape context but our shape representation is not histogram based. 2) Grouping of partial matching hypotheses to object detection hypotheses is expressed as maximum clique inference on a weighted graph. 3) A novel local affine-transformation to utilize the holistic shape information for scoring and ranking the shape similarity hypotheses. Consequently, each detection result not only identifies the location of the target object in the image, but also provides a precise location of its contours, since we transform a complete model contour to the image. Very competitive results on ETHZ dataset, obtained in a pure shape-based framework, demonstrate that our method achieves not only accurate object detection but also precise contour localization on cluttered background.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

Abstract

In this paper, we propose a novel framework for contour based object detection. Compared to previous work, our contribution is three-fold. 1) A novel shape matching scheme suitable for partial matching of edge fragments. The shape descriptor has the same geometric units as shape context but our shape representation is not histogram based. 2) Grouping of partial matching hypotheses to object detection hypotheses is expressed as maximum clique inference on a weighted graph. 3) A novel local affine-transformation to utilize the holistic shape information for scoring and ranking the shape similarity hypotheses. Consequently, each detection result not only identifies the location of the target object in the image, but also provides a precise location of its contours, since we transform a complete model contour to the image. Very competitive results on ETHZ dataset, obtained in a pure shape-based framework, demonstrate that our method achieves not only accurate object detection but also precise contour localization on cluttered background.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从局部变形的局部形状匹配到鲁棒的全局形状相似目标检测
在本文中,我们提出了一种新的基于轮廓的目标检测框架。与以前的工作相比,我们的贡献是三倍的。1)一种适用于边缘碎片部分匹配的新型形状匹配方案。形状描述符具有与形状上下文相同的几何单位,但我们的形状表示不是基于直方图的。2)将部分匹配假设与目标检测假设分组表示为加权图上的最大团推理。3)一种新颖的局部仿射变换,利用整体形状信息对形状相似假设进行评分和排序。因此,每个检测结果不仅可以识别目标物体在图像中的位置,而且还可以提供其轮廓的精确位置,因为我们将完整的模型轮廓转换为图像。在纯基于形状的框架下,在ETHZ数据集上获得的非常有竞争力的结果表明,我们的方法不仅可以实现准确的目标检测,而且可以在杂乱背景下实现精确的轮廓定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linearity of each channel pixel values from a surface in and out of shadows and its applications Continuously tracking and see-through occlusion based on a new hybrid synthetic aperture imaging model Learning a blind measure of perceptual image quality Joint segmentation and classification of human actions in video Probabilistic simultaneous pose and non-rigid shape recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1