Automatic Identification of Make and Model of Ankle Implants using Artificial Intelligence

Shaik Mushkin Ali, Sahithi Nara, A. Ramanathan, C. Malathy, R. Athilakshmi, M. Gayathri, V. Batta
{"title":"Automatic Identification of Make and Model of Ankle Implants using Artificial Intelligence","authors":"Shaik Mushkin Ali, Sahithi Nara, A. Ramanathan, C. Malathy, R. Athilakshmi, M. Gayathri, V. Batta","doi":"10.1109/ICECCT56650.2023.10179730","DOIUrl":null,"url":null,"abstract":"Orthopedic implant identification is a crucial step before planning a revision surgery. Failure to identify implants preoperatively can cause delay in surgeries. This increases pain and trauma to patients. Ankle replacement has seen an increase in both primary and revision surgeries recently. The paper proposes a novel framework to identify the make and model of the Ankle implants from X-ray images using Artificial intelligence. Authors have identified the implants with an accuracy of 96.09 % and an Area under curve of 0.9954 proving the superiority of deep learning in classifying the implants. The proposed work formulates a first and unique framework to identify the make and model of ankle replacements.","PeriodicalId":180790,"journal":{"name":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCT56650.2023.10179730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Orthopedic implant identification is a crucial step before planning a revision surgery. Failure to identify implants preoperatively can cause delay in surgeries. This increases pain and trauma to patients. Ankle replacement has seen an increase in both primary and revision surgeries recently. The paper proposes a novel framework to identify the make and model of the Ankle implants from X-ray images using Artificial intelligence. Authors have identified the implants with an accuracy of 96.09 % and an Area under curve of 0.9954 proving the superiority of deep learning in classifying the implants. The proposed work formulates a first and unique framework to identify the make and model of ankle replacements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工智能的踝关节植入物型号自动识别
骨科植入物识别是计划翻修手术前的关键步骤。术前未能识别植入物会导致手术延迟。这增加了病人的痛苦和创伤。最近,踝关节置换术的初次手术和翻修手术都有所增加。本文提出了一种利用人工智能从x射线图像中识别踝关节植入物的制造和型号的新框架。结果表明,深度学习对植入物分类的准确率为96.09%,曲线下面积为0.9954,证明了深度学习对植入物分类的优越性。提出的工作制定了第一个和独特的框架,以确定踝关节置换的制造和模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model of Markovian Queue with Catastrophe, Restoration and Balking Nibble Based Two Bit Invert Coding Technique for Serial Network on Chip Links Hesitant Triangular Fuzzy Dombi Operators and Its Applications Fuel Cost Optimization of Coal-Fired Power Plants using Coal Blending Proportions An Efficient Classification for Light Motor Vehicles using CatBoost Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1