Ontology-Based Recommender for Distributed Machine Learning Environment

Daniel Pop, Caius Bogdanescu
{"title":"Ontology-Based Recommender for Distributed Machine Learning Environment","authors":"Daniel Pop, Caius Bogdanescu","doi":"10.1109/SYNASC.2013.76","DOIUrl":null,"url":null,"abstract":"Domain experts in different areas have a large number of options for approaching their specific data analysis problem. In exploration of large data sets on HPC systems, choosing which method to use, or how to tune the parameters of an algorithm to achieve good results are challenging tasks for data analysts themselves. In this paper, we propose a recommendation module for a distributed machine learning environment aiming at helping the end-users to obtain optimized results for their data analysis / machine learning problem.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Domain experts in different areas have a large number of options for approaching their specific data analysis problem. In exploration of large data sets on HPC systems, choosing which method to use, or how to tune the parameters of an algorithm to achieve good results are challenging tasks for data analysts themselves. In this paper, we propose a recommendation module for a distributed machine learning environment aiming at helping the end-users to obtain optimized results for their data analysis / machine learning problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于本体的分布式机器学习环境推荐
不同领域的专家有大量的选择来处理他们特定的数据分析问题。在探索HPC系统上的大型数据集时,选择使用哪种方法,或者如何调整算法的参数以获得良好的结果,对于数据分析人员本身来说是一项具有挑战性的任务。在本文中,我们提出了一个分布式机器学习环境的推荐模块,旨在帮助最终用户获得数据分析/机器学习问题的优化结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From the Desktop to the Multi-clouds: The Case of ModelioSaaS Bound Propagation for Arithmetic Reasoning in Vampire Dependence of the Oscillatory Movements of an Unmanned Aerial Vehicle on the Forward Velocity Cph CT Toolbox: CT Reconstruction for Education, Research and Industrial Applications Non-interleaving Operational Semantics for Geographically Replicated Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1