Status Recognition for Electrical Parameters of ESPCP Based on Biomimetic Pattern Recognition

Hai-tao Shi, Yunhua Yu, Qian-qian Kong
{"title":"Status Recognition for Electrical Parameters of ESPCP Based on Biomimetic Pattern Recognition","authors":"Hai-tao Shi, Yunhua Yu, Qian-qian Kong","doi":"10.1109/IWISA.2010.5473236","DOIUrl":null,"url":null,"abstract":"Various fault types and difficult diagnosis restricted the improvement of economic benefit and system efficiency of electrical submersible progressing cavity pump (ESPCP) production system. A novel method for status recognition of electrical parameters in fault diagnosis of ESPCP based on biomimetic pattern recognition (BPR) is presented. Application results show the proposed BPR classifier produces significant accuracy for classification of ESPCP electrical parameters. Compared with the results based on support vector machine (SVM), the proposed method is more efficiency.","PeriodicalId":298764,"journal":{"name":"2010 2nd International Workshop on Intelligent Systems and Applications","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2010.5473236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Various fault types and difficult diagnosis restricted the improvement of economic benefit and system efficiency of electrical submersible progressing cavity pump (ESPCP) production system. A novel method for status recognition of electrical parameters in fault diagnosis of ESPCP based on biomimetic pattern recognition (BPR) is presented. Application results show the proposed BPR classifier produces significant accuracy for classification of ESPCP electrical parameters. Compared with the results based on support vector machine (SVM), the proposed method is more efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于仿生模式识别的ESPCP电参数状态识别
故障类型多,诊断困难,制约了电潜式螺杆泵生产系统经济效益和系统效率的提高。提出了一种基于仿生模式识别(BPR)的ESPCP故障诊断中电气参数状态识别的新方法。应用结果表明,所提出的BPR分类器对ESPCP电参数的分类具有较好的准确性。与基于支持向量机(SVM)的结果相比,该方法具有更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Display the Data from Database by ListView on Android An Improved Genetic Algorithm and Its Blending Application with Neural Network A Study for Important Criteria of Feature Selection in Text Categorization A Hierarchical Classification Model Based on Granular Computing A Study of Improving Apriori Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1