Generating Virtual Head-Mounted Gyroscope Signals From Video Data

MinYen Lu, Chenhao Chen, Billy Dawton, Yugo Nakamura, Yutaka Arakawa
{"title":"Generating Virtual Head-Mounted Gyroscope Signals From Video Data","authors":"MinYen Lu, Chenhao Chen, Billy Dawton, Yugo Nakamura, Yutaka Arakawa","doi":"10.1109/ICCE-Taiwan58799.2023.10227010","DOIUrl":null,"url":null,"abstract":"Human activity recognition (HAR) using the deep learning method has caught the attention of researchers thanks to its automatic feature extraction and accurate prediction capabilities. However, for applications based on a wearable sensor, such as an inertial measurement unit (IMU), the process of collecting and hand-labeling large amounts of data is complicated and labor-intensive, meaning that there is a limited amount of data available for model training. Therefore, there is a need to propose and develop data augmentation approaches to generate high quality data for the growth of HAR research. We propose a head-mounted virtual gyroscope signal generator to alleviate the problems caused by the lack of data in head movement-related applications. Unlike previous work, our system only generates head-motion related gyroscope data, minimizing system complexity. We trained a deep-learning model in a head motion-based application with different generated sensor data ratios, and show the viability of our proposed data generation method.","PeriodicalId":112903,"journal":{"name":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10227010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human activity recognition (HAR) using the deep learning method has caught the attention of researchers thanks to its automatic feature extraction and accurate prediction capabilities. However, for applications based on a wearable sensor, such as an inertial measurement unit (IMU), the process of collecting and hand-labeling large amounts of data is complicated and labor-intensive, meaning that there is a limited amount of data available for model training. Therefore, there is a need to propose and develop data augmentation approaches to generate high quality data for the growth of HAR research. We propose a head-mounted virtual gyroscope signal generator to alleviate the problems caused by the lack of data in head movement-related applications. Unlike previous work, our system only generates head-motion related gyroscope data, minimizing system complexity. We trained a deep-learning model in a head motion-based application with different generated sensor data ratios, and show the viability of our proposed data generation method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从视频数据生成虚拟头戴式陀螺仪信号
基于深度学习方法的人类活动识别(HAR)因其自动特征提取和准确预测能力而受到研究人员的关注。然而,对于基于可穿戴传感器的应用,如惯性测量单元(IMU),收集和手工标记大量数据的过程是复杂和劳动密集型的,这意味着可用于模型训练的数据量有限。因此,有必要提出和开发数据增强方法,为HAR研究的增长生成高质量的数据。我们提出了一种头戴式虚拟陀螺仪信号发生器,以缓解头部运动相关应用中数据缺乏的问题。与以前的工作不同,我们的系统只生成头部运动相关的陀螺仪数据,最大限度地降低了系统的复杂性。我们在一个基于头部运动的应用中训练了一个深度学习模型,该模型具有不同的传感器数据生成比例,并证明了我们所提出的数据生成方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a visual IoT environment analysis system to support self-directed learning of students Smallest Botnet Firewall Building Problem and a Girvan-Newman Algorithm-Based Heuristic Solution Parametric Optimization of WEDM Process for Machining ANSI Steel Using Soft-Computing Methods Development of a Transmissive LED Touch Display for Engineered Marble Sewage Treatment Interactive Learning Game Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1