EPAB: Early Pattern Aware Bayesian Model for Social Content Popularity Prediction

Qitian Wu, Chaoqi Yang, Xiaofeng Gao, Peng He, Guihai Chen
{"title":"EPAB: Early Pattern Aware Bayesian Model for Social Content Popularity Prediction","authors":"Qitian Wu, Chaoqi Yang, Xiaofeng Gao, Peng He, Guihai Chen","doi":"10.1109/ICDM.2018.00175","DOIUrl":null,"url":null,"abstract":"The boom of information technology enables social platforms (like Twitter) to disseminate social content (like news) in an unprecedented rate, which makes early-stage prediction for social content popularity of great practical significance. However, most existing studies assume a long-term observation before prediction and suffer from limited precision for early-stage prediction due to insufficient observation. In this paper, we take a fresh perspective, and propose a novel early pattern aware Bayesian model. The early pattern representation, which stands for early time series normalized on future popularity, can address what we call early-stage indistinctiveness challenge. Then we use an expressive evolving function to fit the time series and estimate three interpretable coefficients characterizing temporal effect of observed series on future evolution. Furthermore, Bayesian network is leveraged to model the probabilistic relations among features, early indicators and early patterns. Experiments on three real-world social platforms (Twitter, Weibo and WeChat) show that under different evaluation metrics, our model outperforms other methods in early-stage prediction and possesses low sensitivity to observation time.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"48 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The boom of information technology enables social platforms (like Twitter) to disseminate social content (like news) in an unprecedented rate, which makes early-stage prediction for social content popularity of great practical significance. However, most existing studies assume a long-term observation before prediction and suffer from limited precision for early-stage prediction due to insufficient observation. In this paper, we take a fresh perspective, and propose a novel early pattern aware Bayesian model. The early pattern representation, which stands for early time series normalized on future popularity, can address what we call early-stage indistinctiveness challenge. Then we use an expressive evolving function to fit the time series and estimate three interpretable coefficients characterizing temporal effect of observed series on future evolution. Furthermore, Bayesian network is leveraged to model the probabilistic relations among features, early indicators and early patterns. Experiments on three real-world social platforms (Twitter, Weibo and WeChat) show that under different evaluation metrics, our model outperforms other methods in early-stage prediction and possesses low sensitivity to observation time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社会内容流行度预测的早期模式感知贝叶斯模型
信息技术的繁荣使社交平台(如Twitter)以前所未有的速度传播社会内容(如新闻),这使得对社会内容流行程度的早期预测具有重要的现实意义。然而,现有的研究大多假设在预测前进行长期观测,由于观测不足,早期预测精度有限。本文从一个全新的视角,提出了一种新的早期模式感知贝叶斯模型。早期模式表示,即对未来流行度进行规范化的早期时间序列,可以解决我们所说的早期不确定性挑战。然后利用表达性演化函数对时间序列进行拟合,估计出三个表征观测序列对未来演化的时间效应的可解释系数。此外,利用贝叶斯网络对特征、早期指标和早期模式之间的概率关系进行建模。在三个真实社交平台(Twitter、微博和微信)上的实验表明,在不同的评价指标下,我们的模型在早期预测方面优于其他方法,并且对观测时间的敏感性较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1