A Molecular Dynamic Study of Nano-Fracture of C3N

Imrul Reza Shishir, A. Tabarraei
{"title":"A Molecular Dynamic Study of Nano-Fracture of C3N","authors":"Imrul Reza Shishir, A. Tabarraei","doi":"10.1115/imece2019-11543","DOIUrl":null,"url":null,"abstract":"\n The recently synthesized two–dimensional C3N is a graphene–like two–dimensional material with remarkable electronic, optoelectronic, thermal, mechanical and chemical properties. Molecular dynamics (MD) simulation is used to investigate the fracture properties of C3N. Cracks with different geometry and orientations are used to investigate how the crack tip configuration and orientation impact the fracture properties of C3N. The results show that regardless of their initial orientation, at microscale cracks always tend to propagate along a zigzag direction. The MD results are used to estimate the critical energy release rate of C3N. The critical energy release rate of both armchair and zigzag cracks increases with the decrease of crack length when the crack length is less than 7 nm. The critical energy release rate for armchair and zigzag cracks longer than 7 nm is respectively 10.16 J/m2 and 8.52 J/m2 which are significantly lower than those of graphene.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Mechanics of Solids, Structures, and Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The recently synthesized two–dimensional C3N is a graphene–like two–dimensional material with remarkable electronic, optoelectronic, thermal, mechanical and chemical properties. Molecular dynamics (MD) simulation is used to investigate the fracture properties of C3N. Cracks with different geometry and orientations are used to investigate how the crack tip configuration and orientation impact the fracture properties of C3N. The results show that regardless of their initial orientation, at microscale cracks always tend to propagate along a zigzag direction. The MD results are used to estimate the critical energy release rate of C3N. The critical energy release rate of both armchair and zigzag cracks increases with the decrease of crack length when the crack length is less than 7 nm. The critical energy release rate for armchair and zigzag cracks longer than 7 nm is respectively 10.16 J/m2 and 8.52 J/m2 which are significantly lower than those of graphene.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C3N纳米断裂的分子动力学研究
最近合成的二维C3N是一种类石墨烯的二维材料,具有优异的电子、光电、热学、力学和化学性能。采用分子动力学(MD)模拟研究了C3N的断裂性能。采用不同几何形状和取向的裂纹,研究裂纹尖端形态和取向对C3N断裂性能的影响。结果表明,在微尺度下,无论初始取向如何,裂纹都倾向于沿之字形方向扩展。MD结果被用来估计C3N的临界能量释放率。当裂纹长度小于7 nm时,扶手形裂纹和之字形裂纹的临界能量释放率均随裂纹长度的减小而增大。长度大于7 nm的扶手型裂纹和之字形裂纹的临界能量释放率分别为10.16 J/m2和8.52 J/m2,显著低于石墨烯的临界能量释放率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macro-Scale Geometric Voids to Alter Stress Wave Propagation in Solids Finite Element Analysis of the Effect of Porosity on the Plasticity and Damage Behavior of Mg AZ31 and Al 6061 T651 Alloys Effects of Drive Side Pressure Angle on Gear Fatigue Crack Propagation Life for Spur Gears With Symmetric and Asymmetric Teeth Guidelines and Limitations of the Compact Compression Specimen Modelling Stress Softening and Necking Phenomena in Double Network Hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1