Hyperspectral feature extraction using contourlet transform

Z. Long, Q. Du, N. Younan
{"title":"Hyperspectral feature extraction using contourlet transform","authors":"Z. Long, Q. Du, N. Younan","doi":"10.1109/PPRS.2012.6398317","DOIUrl":null,"url":null,"abstract":"In this paper, we explore hyperspectral feature extraction using the contourlet transform (CT), a promising multireolution analysis technique emerging in recent years. Hyperspectral imagery is first processed in the spectral domain with some decorrelation techniques. Then the nonsubsampled CT (NSCT) is applied in the spatial domain. The resulting NSCT coefficients are used as features for hyperspectral analysis. The spectral processing techniques being explored include one-dimensional discrete wavelet transform, principal component analysis, and band selection. The extracted features are tested in classification using support vector machine, which yield promising results.","PeriodicalId":139043,"journal":{"name":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":"126 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPRS.2012.6398317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we explore hyperspectral feature extraction using the contourlet transform (CT), a promising multireolution analysis technique emerging in recent years. Hyperspectral imagery is first processed in the spectral domain with some decorrelation techniques. Then the nonsubsampled CT (NSCT) is applied in the spatial domain. The resulting NSCT coefficients are used as features for hyperspectral analysis. The spectral processing techniques being explored include one-dimensional discrete wavelet transform, principal component analysis, and band selection. The extracted features are tested in classification using support vector machine, which yield promising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于contourlet变换的高光谱特征提取
在本文中,我们探索了使用contourlet变换(CT)的高光谱特征提取,这是近年来出现的一种很有前途的多分辨率分析技术。首先在光谱域对高光谱图像进行去相关处理。然后在空间域中应用非下采样CT (NSCT)。所得的NSCT系数用作高光谱分析的特征。正在探索的光谱处理技术包括一维离散小波变换、主成分分析和波段选择。利用支持向量机对提取的特征进行分类测试,取得了令人满意的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D classification of crossroads from multiple aerial images using conditional random fields Unsupervised change detection via hierarchical support vector clustering Study for the periodicity of volcanic activity using satellite data A two-dimensional production system for grouping persistent scatterers in urban high-resolution SAR scenes Remote sensing segmentation benchmark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1