Detecting chaotic signals with nonlinear models

A. Fraser, Q. Cai
{"title":"Detecting chaotic signals with nonlinear models","authors":"A. Fraser, Q. Cai","doi":"10.15760/ETD.6448","DOIUrl":null,"url":null,"abstract":"Hidden Markov models of chaotic signals have been used in numerical detection experiments. For broadband deterministic chaotic signals masked with noise having identical spectra at an SNR of -15 db, the experiments found flawless receiver operating characteristics. In noisy environments the performance of models trained on noise-free signals can be improved by training on signals contaminated by noise typical of the test environment. Continuous valued scalar outputs at each discrete hidden state are modeled as Gaussians with means that depend autoregressively on previous outputs.<<ETX>>","PeriodicalId":309407,"journal":{"name":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15760/ETD.6448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hidden Markov models of chaotic signals have been used in numerical detection experiments. For broadband deterministic chaotic signals masked with noise having identical spectra at an SNR of -15 db, the experiments found flawless receiver operating characteristics. In noisy environments the performance of models trained on noise-free signals can be improved by training on signals contaminated by noise typical of the test environment. Continuous valued scalar outputs at each discrete hidden state are modeled as Gaussians with means that depend autoregressively on previous outputs.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用非线性模型检测混沌信号
混沌信号的隐马尔可夫模型已用于数值检测实验。在信噪比为-15 db的情况下,对于具有相同频谱的宽带确定性混沌信号,实验发现接收机的工作特性完美无瑕。在有噪声的环境中,用无噪声信号训练的模型的性能可以通过对被测试环境中典型噪声污染的信号进行训练而得到改善。每个离散隐藏状态下的连续值标量输出被建模为高斯函数,其均值自回归地依赖于前一个输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear prediction based on higher order statistics by a new criterion Fourth-order cumulant structure forcing: application to blind array processing Wideband spatial processing with wavelet transforms Simultaneous CFAR detection and frequency estimation of a sinusoidal signal in noise Least-squares reconstruction of an image from its noisy observations using the bispectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1