Demo: Real-Time Implementation of Optimal Nonlinear Self-Interference Cancellation for Full-Duplex Radio

Jungyeon Kim, Hyowon Lee, N. Lee
{"title":"Demo: Real-Time Implementation of Optimal Nonlinear Self-Interference Cancellation for Full-Duplex Radio","authors":"Jungyeon Kim, Hyowon Lee, N. Lee","doi":"10.1109/ICCWorkshops53468.2022.9915016","DOIUrl":null,"url":null,"abstract":"The full-duplex radio can potentially double the spectral efficiency with perfect self-interference cancellation. Traditionally, nonlinear digital self-interference cancellation (SIC) uses least mean squares (LMS) algorithms using Volterra series and Hammerstein basis expansions. However, this traditional approach slows down the convergence speed and degrades the cancellation performance due to the correlation among the nonlinear basis functions. In this demo, we develop the optimal nonlinear digital SIC for the IEEE 802.11a Wi-Fi full-duplex systems. Our approach harnesses the LMS algorithm built upon Ito-Hermite polynomials that form a set of the orthogonal basis for the complex Gaussian input process. We develop a software-defined radio full-duplex testbed compliant to the IEEE 802.11a Wi-Fi standards. Using this testbed, we show experimental results of the proposed optimal SIC algorithm and verify the superiority by comparing it with the existing SIC algorithms.","PeriodicalId":102261,"journal":{"name":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWorkshops53468.2022.9915016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The full-duplex radio can potentially double the spectral efficiency with perfect self-interference cancellation. Traditionally, nonlinear digital self-interference cancellation (SIC) uses least mean squares (LMS) algorithms using Volterra series and Hammerstein basis expansions. However, this traditional approach slows down the convergence speed and degrades the cancellation performance due to the correlation among the nonlinear basis functions. In this demo, we develop the optimal nonlinear digital SIC for the IEEE 802.11a Wi-Fi full-duplex systems. Our approach harnesses the LMS algorithm built upon Ito-Hermite polynomials that form a set of the orthogonal basis for the complex Gaussian input process. We develop a software-defined radio full-duplex testbed compliant to the IEEE 802.11a Wi-Fi standards. Using this testbed, we show experimental results of the proposed optimal SIC algorithm and verify the superiority by comparing it with the existing SIC algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
演示:全双工无线电最优非线性自干扰消除的实时实现
全双工无线电可以通过完美的自干扰消除将频谱效率提高一倍。传统上,非线性数字自干扰抵消(SIC)使用Volterra级数和Hammerstein基展开的最小均方(LMS)算法。然而,由于非线性基函数之间的相关性,这种传统方法降低了收敛速度,降低了对消性能。在本演示中,我们开发了用于IEEE 802.11a Wi-Fi全双工系统的最佳非线性数字SIC。我们的方法利用建立在伊托-埃尔米特多项式上的LMS算法,该多项式形成了复杂高斯输入过程的一组正交基。我们开发了一个符合IEEE 802.11a Wi-Fi标准的软件定义无线电全双工测试平台。在该试验台上,我们展示了所提出的最优SIC算法的实验结果,并通过与现有SIC算法的比较验证了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Analysis of a Bistatic Joint Sensing and Communication System An Upgraded Object Detection Model for Enhanced Perception and Decision Making in Autonomous Vehicles Demo: Low-power Communications Based on RIS and AI for 6G Demo: Deterministic Radio Propagation Simulation for Integrated Communication Systems in Multimodal Intelligent Transportation Scenarios Energy Efficient Distributed Learning in Integrated Fog-Cloud Computing Enabled IoT Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1