{"title":"Real-time filtering on interest profiles in Twitter stream","authors":"Yue Fei, Chao Lv, Yansong Feng, Dongyan Zhao","doi":"10.1145/2910896.2925462","DOIUrl":null,"url":null,"abstract":"The advent of Twitter has led to the ubiquitous information overload problem with a dramatic increase in the amount of tweets a user is exposed to. In this paper, we consider real-time tweet filtering with respect to users' interest profiles in public Twitter stream. While traditional filtering methods mainly focus on judging relevance of a document, we aim to retrieve relevant and novel documents to address the high redundancy of tweets. An unsupervised approach is proposed to model relevance between tweets and different profiles adaptively and a neural network language model is employed to learn semantic representation for tweets. Experiments on TREC 2015 dataset demonstrate the effectiveness of the proposed approach.","PeriodicalId":109613,"journal":{"name":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2910896.2925462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The advent of Twitter has led to the ubiquitous information overload problem with a dramatic increase in the amount of tweets a user is exposed to. In this paper, we consider real-time tweet filtering with respect to users' interest profiles in public Twitter stream. While traditional filtering methods mainly focus on judging relevance of a document, we aim to retrieve relevant and novel documents to address the high redundancy of tweets. An unsupervised approach is proposed to model relevance between tweets and different profiles adaptively and a neural network language model is employed to learn semantic representation for tweets. Experiments on TREC 2015 dataset demonstrate the effectiveness of the proposed approach.