Non-parametric discriminatory power

H.J. Holz, M. Loew
{"title":"Non-parametric discriminatory power","authors":"H.J. Holz, M. Loew","doi":"10.1109/WITS.1994.513894","DOIUrl":null,"url":null,"abstract":"Discriminatory power is the relative usefulness of a feature for classification. Traditionally feature-selection techniques have defined discriminatory power in terms of a particular classifier. Non-parametric discriminately power allows feature selection to be based on the structure of the data rather than on the requirements of any one classifier. In previous research, we have defined a metric for non-parametric discriminatory power called relative feature importance (RFI). In this work, we explore the construction of RFI through closed-form analysis and experimentation. The behavior of RFI is also compared to traditional techniques.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Discriminatory power is the relative usefulness of a feature for classification. Traditionally feature-selection techniques have defined discriminatory power in terms of a particular classifier. Non-parametric discriminately power allows feature selection to be based on the structure of the data rather than on the requirements of any one classifier. In previous research, we have defined a metric for non-parametric discriminatory power called relative feature importance (RFI). In this work, we explore the construction of RFI through closed-form analysis and experimentation. The behavior of RFI is also compared to traditional techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非参数歧视力
区分力是一个特征对分类的相对有用性。传统的特征选择技术根据一个特定的分类器来定义区分权。非参数判别能力允许特征选择基于数据的结构,而不是基于任何一个分类器的要求。在之前的研究中,我们定义了一个度量非参数歧视能力的指标,称为相对特征重要性(RFI)。在这项工作中,我们通过封闭形式的分析和实验来探索RFI的构建。RFI的行为也与传统技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large deviations and consistent estimates for Gibbs random fields Markov chains for modeling and analyzing digital data signals Maximized mutual information using macrocanonical probability distributions Coding for noisy feasible channels Identification via compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1