Data Mining a Prostate Cancer Dataset Using Rough Sets

K. Revett, S.T. de Magalhaes, H. Santos
{"title":"Data Mining a Prostate Cancer Dataset Using Rough Sets","authors":"K. Revett, S.T. de Magalhaes, H. Santos","doi":"10.1109/IS.2006.348433","DOIUrl":null,"url":null,"abstract":"Prostate cancer remains one of the leading causes of cancer death worldwide, with a reported incidence rate of 650,000 cases per annum worldwide. The causal factors of prostate cancer still remain to be determined. In this paper, we investigate a medical dataset containing clinical information on 502 prostate cancer patients using the machine learning technique of rough sets. Our preliminary results yield a classification accuracy of 90%, with high sensitivity and specificity (both at approximately 91%). Our results yield a predictive positive value (PPN) of 81% and a predictive negative value (PNV) of 95%. In addition to the high classification accuracy of our system, the rough set approach also provides a rule-based inference mechanism for information extraction that is suitable for integration into a rule-based system. The generated rules relate directly to the attributes and their values and provide a direct mapping between them","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Prostate cancer remains one of the leading causes of cancer death worldwide, with a reported incidence rate of 650,000 cases per annum worldwide. The causal factors of prostate cancer still remain to be determined. In this paper, we investigate a medical dataset containing clinical information on 502 prostate cancer patients using the machine learning technique of rough sets. Our preliminary results yield a classification accuracy of 90%, with high sensitivity and specificity (both at approximately 91%). Our results yield a predictive positive value (PPN) of 81% and a predictive negative value (PNV) of 95%. In addition to the high classification accuracy of our system, the rough set approach also provides a rule-based inference mechanism for information extraction that is suitable for integration into a rule-based system. The generated rules relate directly to the attributes and their values and provide a direct mapping between them
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粗糙集的前列腺癌数据挖掘
前列腺癌仍然是全世界癌症死亡的主要原因之一,据报道,全世界每年的发病率为65万例。前列腺癌的致病因素仍有待确定。在本文中,我们使用粗糙集的机器学习技术研究了包含502名前列腺癌患者临床信息的医疗数据集。我们的初步结果产生的分类准确率为90%,具有高灵敏度和特异性(均约为91%)。我们的结果得出预测阳性值(PPN)为81%,预测阴性值(PNV)为95%。除了我们的系统具有较高的分类精度外,粗糙集方法还提供了一种基于规则的信息提取推理机制,适合集成到基于规则的系统中。生成的规则直接与属性及其值相关,并提供它们之间的直接映射
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Neurofuzzy Adaptive Kalman Filter Artificial Intelligence Technique for Gene Expression Profiling of Urinary Bladder Cancer Evolutionary Support Vector Machines for Diabetes Mellitus Diagnosis IGUANA: Individuation of Global Unsafe ANomalies and Alarm activation Smart Data Analysis Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1