Bayesian sparse estimation of migrating targets in autoregressive noise for wideband radar

S. Bidon, O. Besson, J. Tourneret, F. Le Chevalier
{"title":"Bayesian sparse estimation of migrating targets in autoregressive noise for wideband radar","authors":"S. Bidon, O. Besson, J. Tourneret, F. Le Chevalier","doi":"10.1109/RADAR.2014.6875658","DOIUrl":null,"url":null,"abstract":"In recent work we showed the interest of using sparse representation techniques to estimate a target scene observed by wideband radar systems. However the principle was demonstrated in a white noise background only. In this paper, we present an extended version of our sparse estimation technique that attempts to take into account the (possible) presence of diffuse clutter. More specifically, an autoregressive model is considered for the noise vector. Performance of the technique is studied on synthetic and experimental data. Pertinence of the noise model is discussed.","PeriodicalId":127690,"journal":{"name":"2014 IEEE Radar Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2014.6875658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In recent work we showed the interest of using sparse representation techniques to estimate a target scene observed by wideband radar systems. However the principle was demonstrated in a white noise background only. In this paper, we present an extended version of our sparse estimation technique that attempts to take into account the (possible) presence of diffuse clutter. More specifically, an autoregressive model is considered for the noise vector. Performance of the technique is studied on synthetic and experimental data. Pertinence of the noise model is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宽带雷达自回归噪声下迁移目标的贝叶斯稀疏估计
在最近的工作中,我们展示了使用稀疏表示技术来估计宽带雷达系统观测到的目标场景的兴趣。然而,该原理仅在白噪声背景下进行了演示。在本文中,我们提出了稀疏估计技术的扩展版本,该技术试图考虑(可能的)漫射杂波的存在。更具体地说,考虑了噪声向量的自回归模型。利用合成数据和实验数据对该技术的性能进行了研究。讨论了噪声模型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel random stepped frequency radar using chaos A robust sparse optimization for pattern synthesis with unknown manifold error Low-profile high-sensitivity sub-array module with HTS filters for an active phased array antenna Compressed radar via Doppler focusing Ambiguity function of bipolar ultrawideband-throb signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1