H∞ state estimation for neural networks with mixed time delays

Kaibo Shi, Hong Zhu, S. Zhong, Yong Zeng, Yuping Zhang
{"title":"H∞ state estimation for neural networks with mixed time delays","authors":"Kaibo Shi, Hong Zhu, S. Zhong, Yong Zeng, Yuping Zhang","doi":"10.1109/CCDC.2015.7162878","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of H∞ state estimation for neural networks with mixed time-varying delays. Firstly, based on a newly augmented Lyapunov-Krasovskii functional (LKF), novel delay-dependent conditions are obtained such that the error system is globally asymptotically stable with H∞ performance index γ. Secondly, less conservative stable results are established by employing some effective mathematical techniques and Wirtinger integral inequality. Besides, new activation function conditions are proposed by introducing an adjustable parameter σ. The wishful estimator gain matrix can be formed in terms of linear matrix inequalities (LMIs). Finally, one numerical example with simulations is given to demonstrate the effectiveness and the advantage of the theoretical results.","PeriodicalId":273292,"journal":{"name":"The 27th Chinese Control and Decision Conference (2015 CCDC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 27th Chinese Control and Decision Conference (2015 CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2015.7162878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the problem of H∞ state estimation for neural networks with mixed time-varying delays. Firstly, based on a newly augmented Lyapunov-Krasovskii functional (LKF), novel delay-dependent conditions are obtained such that the error system is globally asymptotically stable with H∞ performance index γ. Secondly, less conservative stable results are established by employing some effective mathematical techniques and Wirtinger integral inequality. Besides, new activation function conditions are proposed by introducing an adjustable parameter σ. The wishful estimator gain matrix can be formed in terms of linear matrix inequalities (LMIs). Finally, one numerical example with simulations is given to demonstrate the effectiveness and the advantage of the theoretical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合时滞神经网络的H∞状态估计
研究了具有混合时变时滞的神经网络的H∞状态估计问题。首先,基于一种新的增广Lyapunov-Krasovskii泛函(LKF),得到了误差系统全局渐近稳定且具有H∞性能指标γ的延迟相关条件。其次,利用一些有效的数学技巧和Wirtinger积分不等式建立了低保守的稳定结果。此外,通过引入可调参数σ,提出了新的激活函数条件。期望估计增益矩阵可以用线性矩阵不等式(lmi)来表示。最后,通过一个数值算例验证了理论结果的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application and design of attack and defense algorithms in WTN chess of computer games Research on calculating method of hidden layer nodes in BP network An improved GAFSA with adaptive step chaotic search The research on flywheel acceleration assessment with null motion escaping singularity for variable speed control moment gyros A multiple sub-models self-tuning control algorithm of non-uniformly sampled systems based on auxiliary-variable-model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1