Synthetic software tool for compressive sensing reconstruction

Sanja Zuković, Milica Medenica, I. Orović, S. Stankovic
{"title":"Synthetic software tool for compressive sensing reconstruction","authors":"Sanja Zuković, Milica Medenica, I. Orović, S. Stankovic","doi":"10.1109/MECO.2014.6862699","DOIUrl":null,"url":null,"abstract":"A synthetic software tool for the reconstruction of Compressive Sensed signals is proposed. Compressive Sensing is a new signal sensing approach aiming to decrease the requirements for resources in real digital systems. Using very complex mathematical algorithms, it is possible to reconstruct the Compressive Sensed signals using just a small number of randomly chosen samples. Accordingly, the proposed software comprises and implements different signal reconstruction algorithms, providing different reconstruction performances. There is also an open possibility to include other methods within the software. Here, we will present just some of the most important algorithms and functionalities provided by the proposed tool. The software options and efficiency will be demonstrated on synthetic and real-world signals.","PeriodicalId":416168,"journal":{"name":"2014 3rd Mediterranean Conference on Embedded Computing (MECO)","volume":"25 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 3rd Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2014.6862699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A synthetic software tool for the reconstruction of Compressive Sensed signals is proposed. Compressive Sensing is a new signal sensing approach aiming to decrease the requirements for resources in real digital systems. Using very complex mathematical algorithms, it is possible to reconstruct the Compressive Sensed signals using just a small number of randomly chosen samples. Accordingly, the proposed software comprises and implements different signal reconstruction algorithms, providing different reconstruction performances. There is also an open possibility to include other methods within the software. Here, we will present just some of the most important algorithms and functionalities provided by the proposed tool. The software options and efficiency will be demonstrated on synthetic and real-world signals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压缩感知重构的综合软件工具
提出了一种用于压缩感知信号重建的综合软件工具。压缩感知是一种新的信号感知方法,旨在减少实际数字系统对资源的需求。使用非常复杂的数学算法,仅使用少量随机选择的样本就可以重建压缩感知信号。因此,所提出的软件包含并实现了不同的信号重构算法,提供了不同的重构性能。在软件中包含其他方法也是一种开放的可能性。在这里,我们将介绍建议的工具提供的一些最重要的算法和功能。软件的选择和效率将在合成信号和实际信号上进行演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anthropogenic situation express monitoring on the base of the fuzzy neural networks Comparison analysis of myriad estimator calculation algorithms CS performance analysis for the musical signals reconstruction Construction and exploitation of VLIW asips with multiple vector-widths Area coverage in wireless sensor network by using harmony search algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1