{"title":"MigSGX","authors":"K. Nakashima, Kenichi Kourai","doi":"10.1145/3468737.3494088","DOIUrl":null,"url":null,"abstract":"Recently, containers are widely used to process big data in clouds. To prevent information leakage from containers, applications in containers can protect sensitive information using enclaves provided by Intel SGX. The memory of enclaves is encrypted by a CPU using its internal keys. However, the execution of SGX applications cannot be continued after the container running those applications is migrated. This is because enclave memory cannot be correctly decrypted at the destination host. This paper proposes MigSGX for enabling the continuous execution of SGX applications after container migration. Since the states of enclaves cannot be directly accessed from the outside, MigSGX securely invokes each enclave and makes it dump and load its state. Atthe dump time, each enclave re-encrypts its state using a CPU-independent key to protect sensitive information. For space- and time-efficiency, MigSGX saves and restores a large amount of enclave memory in a pipelined manner. We have implemented MigSGX in the Intel SGX SDK and CRIU and showed that pipelining could improve migration performance by up to 52%. The memory necessary for migration was reduced only to 0.15%.","PeriodicalId":254382,"journal":{"name":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468737.3494088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Recently, containers are widely used to process big data in clouds. To prevent information leakage from containers, applications in containers can protect sensitive information using enclaves provided by Intel SGX. The memory of enclaves is encrypted by a CPU using its internal keys. However, the execution of SGX applications cannot be continued after the container running those applications is migrated. This is because enclave memory cannot be correctly decrypted at the destination host. This paper proposes MigSGX for enabling the continuous execution of SGX applications after container migration. Since the states of enclaves cannot be directly accessed from the outside, MigSGX securely invokes each enclave and makes it dump and load its state. Atthe dump time, each enclave re-encrypts its state using a CPU-independent key to protect sensitive information. For space- and time-efficiency, MigSGX saves and restores a large amount of enclave memory in a pipelined manner. We have implemented MigSGX in the Intel SGX SDK and CRIU and showed that pipelining could improve migration performance by up to 52%. The memory necessary for migration was reduced only to 0.15%.