Cerberus

Chen Griner, Johannes Zerwas, Andreas Blenk, M. Ghobadi, S. Schmid, C. Avin
{"title":"Cerberus","authors":"Chen Griner, Johannes Zerwas, Andreas Blenk, M. Ghobadi, S. Schmid, C. Avin","doi":"10.1145/3491050","DOIUrl":null,"url":null,"abstract":"The bandwidth and latency requirements of modern datacenter applications have led researchers to propose various topology designs using static, dynamic demand-oblivious (rotor), and/or dynamic demand-aware switches. However, given the diverse nature of datacenter traffic, there is little consensus about how these designs would fare against each other. In this work, we analyze the throughput of existing topology designs under different traffic patterns and study their unique advantages and potential costs in terms of bandwidth and latency ''tax''. To overcome the identified inefficiencies, we propose Cerberus, a unified, two-layer leaf-spine optical datacenter design with three topology types. Cerberus systematically matches different traffic patterns with their most suitable topology type: e.g., latency-sensitive flows are transmitted via a static topology, all-to-all traffic via a rotor topology, and elephant flows via a demand-aware topology. We show analytically and in simulations that Cerberus can improve throughput significantly compared to alternative approaches and operate datacenters at higher loads while being throughput-proportional.","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The bandwidth and latency requirements of modern datacenter applications have led researchers to propose various topology designs using static, dynamic demand-oblivious (rotor), and/or dynamic demand-aware switches. However, given the diverse nature of datacenter traffic, there is little consensus about how these designs would fare against each other. In this work, we analyze the throughput of existing topology designs under different traffic patterns and study their unique advantages and potential costs in terms of bandwidth and latency ''tax''. To overcome the identified inefficiencies, we propose Cerberus, a unified, two-layer leaf-spine optical datacenter design with three topology types. Cerberus systematically matches different traffic patterns with their most suitable topology type: e.g., latency-sensitive flows are transmitted via a static topology, all-to-all traffic via a rotor topology, and elephant flows via a demand-aware topology. We show analytically and in simulations that Cerberus can improve throughput significantly compared to alternative approaches and operate datacenters at higher loads while being throughput-proportional.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冥府守门狗
现代数据中心应用的带宽和延迟要求使得研究人员提出了使用静态、动态需求无关(转子)和/或动态需求感知开关的各种拓扑设计。然而,考虑到数据中心流量的多样性,对于这些设计如何相互竞争,几乎没有达成共识。在这项工作中,我们分析了现有拓扑设计在不同流量模式下的吞吐量,并研究了它们在带宽和延迟“税”方面的独特优势和潜在成本。为了克服所发现的低效率,我们提出了Cerberus,一种统一的双层叶脊光学数据中心设计,具有三种拓扑类型。Cerberus系统地将不同的流量模式与最合适的拓扑类型相匹配:例如,延迟敏感的流量通过静态拓扑传输,所有对所有的流量通过转子拓扑传输,大象流通过需求感知拓扑传输。我们通过分析和模拟表明,与其他方法相比,Cerberus可以显著提高吞吐量,并在吞吐量成比例的情况下在更高的负载下运行数据中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
A Large Scale Study and Classification of VirusTotal Reports on Phishing and Malware URLs POMACS V7, N2, June 2023 Editorial SplitRPC: A {Control + Data} Path Splitting RPC Stack for ML Inference Serving Smash: Flexible, Fast, and Resource-efficient Placement and Lookup of Distributed Storage Towards Accelerating Data Intensive Application's Shuffle Process Using SmartNICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1