The Avrami Equation

B. Cantor
{"title":"The Avrami Equation","authors":"B. Cantor","doi":"10.1093/oso/9780198851875.003.0009","DOIUrl":null,"url":null,"abstract":"When materials are heated or cooled, their structure often changes. This is called a phase transformation. Phase transformations are used extensively to modify and control the final microstructure and properties of a material during manufacturing into its final product form. The Avrami equation describes the sigmoidal (S-shaped) way in which the amount of a new phase evolves, initially accelerating as particles of the new phase nucleate and grow, and then decelerating as the old phase becomes progressively exhausted. This chapter explains the development of new phases by nucleation and growth, the mechanisms of precipitation, eutectoid and martensite reactions, and the use of time–temperature–transformation curves to understand and control transformation behaviour. The Avrami equation was derived independently in the mid-20th century by Melvin Avrami at Columbia University, Robert Mehl and his student W. Johnson at Carnegie Tech, and Andrei Kolmogorov at Moscow State University. Avrami was horrified by the development of the atomic bomb at the end of the Second World War and dropped out of society to work as a caretaker on Orcas Island off the West Coast of America, before changing his name and returning as a physicist some years later; Mehl is known as one of the father figures of metallurgical science in the United States; and Kolmogorov made important advances in fields such as trigonometry, probability, topology, turbulence and genetics.","PeriodicalId":227024,"journal":{"name":"The Equations of Materials","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Equations of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198851875.003.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When materials are heated or cooled, their structure often changes. This is called a phase transformation. Phase transformations are used extensively to modify and control the final microstructure and properties of a material during manufacturing into its final product form. The Avrami equation describes the sigmoidal (S-shaped) way in which the amount of a new phase evolves, initially accelerating as particles of the new phase nucleate and grow, and then decelerating as the old phase becomes progressively exhausted. This chapter explains the development of new phases by nucleation and growth, the mechanisms of precipitation, eutectoid and martensite reactions, and the use of time–temperature–transformation curves to understand and control transformation behaviour. The Avrami equation was derived independently in the mid-20th century by Melvin Avrami at Columbia University, Robert Mehl and his student W. Johnson at Carnegie Tech, and Andrei Kolmogorov at Moscow State University. Avrami was horrified by the development of the atomic bomb at the end of the Second World War and dropped out of society to work as a caretaker on Orcas Island off the West Coast of America, before changing his name and returning as a physicist some years later; Mehl is known as one of the father figures of metallurgical science in the United States; and Kolmogorov made important advances in fields such as trigonometry, probability, topology, turbulence and genetics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Avrami方程
当材料被加热或冷却时,它们的结构经常发生变化。这叫做相变。相变被广泛用于在制造过程中改变和控制材料的最终微观结构和性能,使其成为最终产品形式。Avrami方程描述了新相的数量演变的s形方式,最初随着新相的粒子成核和生长而加速,然后随着旧相逐渐耗尽而减速。本章解释了新相通过成核和生长的发展,沉淀、共析和马氏体反应的机制,以及使用时间-温度转变曲线来理解和控制转变行为。阿夫拉米方程是在20世纪中期由哥伦比亚大学的梅尔文·阿夫拉米、卡内基理工学院的罗伯特·梅尔和他的学生w·约翰逊以及莫斯科国立大学的安德烈·科尔莫戈罗夫独立推导出来的。第二次世界大战结束时,原子弹的发展吓坏了阿夫拉米,他退出了社会,在美国西海岸的奥卡斯岛上做了一名看管人,几年后改名并以物理学家的身份回归;梅尔被誉为美国冶金学之父之一;柯尔莫哥洛夫在三角学、概率论、拓扑学、湍流学和遗传学等领域取得了重要进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Gibbs Phase Rule The Arrhenius Equation Boltzmann’s Equation Bragg’s Law The Gibbs-Thomson Equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1