Non-Intrusive Load Monitoring for Multi-objects in Smart Building

Dandan Li, Jiangfeng Li, Xinhua Zeng, V. Stanković, L. Stanković, Qingjiang Shi
{"title":"Non-Intrusive Load Monitoring for Multi-objects in Smart Building","authors":"Dandan Li, Jiangfeng Li, Xinhua Zeng, V. Stanković, L. Stanković, Qingjiang Shi","doi":"10.1109/BalkanCom53780.2021.9593224","DOIUrl":null,"url":null,"abstract":"The rapidly expansion of Internet of Things (IoT) has ignited renewed interest in energy disaggregation via non-intrusive load monitoring (NILM). Compared to the more frequent NILM approach of training one model for each appliance, this paper proposes a multi-label learning approach based on the widely cited sequence2point convolutional neural network (CNN). Using the smart meter readings collected in an office building, we demonstrate the accuracy and practicality of the proposed network compared to start-of-the-art one-to-one NILM models.","PeriodicalId":115090,"journal":{"name":"2021 International Balkan Conference on Communications and Networking (BalkanCom)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Balkan Conference on Communications and Networking (BalkanCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BalkanCom53780.2021.9593224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The rapidly expansion of Internet of Things (IoT) has ignited renewed interest in energy disaggregation via non-intrusive load monitoring (NILM). Compared to the more frequent NILM approach of training one model for each appliance, this paper proposes a multi-label learning approach based on the widely cited sequence2point convolutional neural network (CNN). Using the smart meter readings collected in an office building, we demonstrate the accuracy and practicality of the proposed network compared to start-of-the-art one-to-one NILM models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能建筑中多目标非侵入式负荷监控
物联网(IoT)的快速发展重新点燃了人们对通过非侵入式负荷监测(NILM)进行能源分解的兴趣。与更常见的为每个设备训练一个模型的NILM方法相比,本文提出了一种基于广泛引用的sequence2point卷积神经网络(CNN)的多标签学习方法。通过在办公楼中收集的智能电表读数,我们证明了与最先进的一对一NILM模型相比,所提出网络的准确性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Precoding and Deployment of Millimeter-Wave Drone Base Stations Fading Modeling in Indoor THz Wireless Systems [BalkanCom 2021 Front cover] An ensemble learning framework for distributed resource allocation in inteference channels: The two user case Edge Computing: System Overview and Fusion with Wireless Power Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1