Performance of back propagation networks for associative database retrieval

V. Cherkassky, N. Vassilas
{"title":"Performance of back propagation networks for associative database retrieval","authors":"V. Cherkassky, N. Vassilas","doi":"10.1109/IJCNN.1989.118562","DOIUrl":null,"url":null,"abstract":"Back-propagation networks have been successfully used to perform a variety of input-output mapping tasks for recognition, generalization, and classification. In spite of this method's popularity, virtually nothing is known about its saturation/capacity and, in more general terms, about its performance as an associative memory. The authors address these issues using associative database retrieval as an original application domain. Experimental results show that the quality of recall and the network capacity are very significantly affected by the network topology (the number of hidden units), data representation (encoding), and the choice of learning parameters. On the basis of their results and the fact that back-propagation learning is not recursive, the authors conclude that back-propagation networks can be used mainly as read-only associative memories and represent a poor choice for read-and-write associative memories.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Back-propagation networks have been successfully used to perform a variety of input-output mapping tasks for recognition, generalization, and classification. In spite of this method's popularity, virtually nothing is known about its saturation/capacity and, in more general terms, about its performance as an associative memory. The authors address these issues using associative database retrieval as an original application domain. Experimental results show that the quality of recall and the network capacity are very significantly affected by the network topology (the number of hidden units), data representation (encoding), and the choice of learning parameters. On the basis of their results and the fact that back-propagation learning is not recursive, the authors conclude that back-propagation networks can be used mainly as read-only associative memories and represent a poor choice for read-and-write associative memories.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关联数据库检索的反向传播网络性能
反向传播网络已经成功地用于执行各种输入-输出映射任务,用于识别、泛化和分类。尽管这种方法很受欢迎,但实际上我们对它的饱和/容量一无所知,更一般地说,我们对它作为联想记忆的性能一无所知。作者使用关联数据库检索作为一个原始的应用领域来解决这些问题。实验结果表明,网络拓扑(隐藏单元的数量)、数据表示(编码)和学习参数的选择对召回质量和网络容量有非常显著的影响。基于他们的结果和反向传播学习不是递归的事实,作者得出结论,反向传播网络可以主要用作只读联想记忆,而对于读写联想记忆来说,这是一个糟糕的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid distributed/local connectionist architectures A new back-propagation algorithm with coupled neuron A novel objective function for improved phoneme recognition using time delay neural networks Optimization of a digital neuron design Multitarget tracking with an optical neural net using a quadratic energy function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1