Blast: Accelerating high-performance data analytics applications by optical multicast

Yiting Xia, Xiaoye Steven Sun
{"title":"Blast: Accelerating high-performance data analytics applications by optical multicast","authors":"Yiting Xia, Xiaoye Steven Sun","doi":"10.1109/INFOCOM.2015.7218576","DOIUrl":null,"url":null,"abstract":"Multicast data dissemination is the performance bottleneck for high-performance data analytics applications in cluster computing, because terabytes of data need to be distributed routinely from a single data source to hundreds of computing servers. The state-of-the-art solutions for delivering these massive data sets all rely on application-layer overlays, which suffer from inherent performance limitations. This paper presents Blast, a system for accelerating data analytics applications by optical multicast. Blast leverages passive optical power splitting to duplicate data at line rate on a physical-layer broadcast medium separate from the packet-switched network core. We implement Blast on a small-scale hardware testbed. Multicast transmission can start 33ms after an application issues the request, resulting in a very small control overhead. We evaluate Blast's performance at the scale of thousands of servers through simulation. Using only a 10Gbps optical uplink per rack, Blast achieves upto 102× better performance than the state-of-the-art solutions even when they are used over a non-blocking core network with a 400Gbps uplink per rack.","PeriodicalId":342583,"journal":{"name":"2015 IEEE Conference on Computer Communications (INFOCOM)","volume":"87 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Communications (INFOCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2015.7218576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Multicast data dissemination is the performance bottleneck for high-performance data analytics applications in cluster computing, because terabytes of data need to be distributed routinely from a single data source to hundreds of computing servers. The state-of-the-art solutions for delivering these massive data sets all rely on application-layer overlays, which suffer from inherent performance limitations. This paper presents Blast, a system for accelerating data analytics applications by optical multicast. Blast leverages passive optical power splitting to duplicate data at line rate on a physical-layer broadcast medium separate from the packet-switched network core. We implement Blast on a small-scale hardware testbed. Multicast transmission can start 33ms after an application issues the request, resulting in a very small control overhead. We evaluate Blast's performance at the scale of thousands of servers through simulation. Using only a 10Gbps optical uplink per rack, Blast achieves upto 102× better performance than the state-of-the-art solutions even when they are used over a non-blocking core network with a 400Gbps uplink per rack.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blast:通过光组播加速高性能数据分析应用
多播数据传播是集群计算中高性能数据分析应用程序的性能瓶颈,因为需要将tb级的数据从单个数据源例行地分发到数百个计算服务器。用于交付这些海量数据集的最先进的解决方案都依赖于应用程序层覆盖,这受到固有性能限制的影响。本文介绍了一个利用光组播技术加速数据分析应用的系统Blast。Blast利用无源光功率分割在与分组交换网络核心分离的物理层广播介质上以线速率复制数据。我们在一个小规模的硬件测试平台上执行Blast。多播传输可以在应用程序发出请求后33ms开始,从而产生非常小的控制开销。我们通过模拟来评估Blast在数千台服务器规模下的性能。每个机架仅使用10Gbps的光上行链路,即使在每个机架具有400Gbps上行链路的非阻塞核心网络上使用,Blast的性能也比最先进的解决方案高出102倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ambient rendezvous: Energy-efficient neighbor discovery via acoustic sensing A-DCF: Design and implementation of delay and queue length based wireless MAC Original SYN: Finding machines hidden behind firewalls Supporting WiFi and LTE co-existence MadeCR: Correlation-based malware detection for cognitive radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1