Texture classification, texture segmentation and text segmentation with discrete-time cellular neural networks

A. Kellner, H. Magnussen, J. Nossek
{"title":"Texture classification, texture segmentation and text segmentation with discrete-time cellular neural networks","authors":"A. Kellner, H. Magnussen, J. Nossek","doi":"10.1109/CNNA.1994.381672","DOIUrl":null,"url":null,"abstract":"Global Learning Algorithms presented in a companion paper are applied to practical classification and segmentation problems: Texture Classification and Texture Segmentation of artificial and natural textures, and Text Segmentation as a sub-problem of Page Layout Analysis. In all cases, DTCNN systems can solve the problem very well in spite of its only local interconnection structure.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Global Learning Algorithms presented in a companion paper are applied to practical classification and segmentation problems: Texture Classification and Texture Segmentation of artificial and natural textures, and Text Segmentation as a sub-problem of Page Layout Analysis. In all cases, DTCNN systems can solve the problem very well in spite of its only local interconnection structure.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于离散时间细胞神经网络的纹理分类、纹理分割和文本分割
本文提出的全局学习算法应用于实际的分类和分割问题:人工和自然纹理的纹理分类和纹理分割,以及作为页面布局分析子问题的文本分割。在所有情况下,DTCNN系统都可以很好地解决问题,尽管它只有局部互连结构
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realisation of a digital cellular neural network for image processing Convergence and stability of the FSR CNN model A versatile CMOS building block for fully analogically-programmable VLSI cellular neural networks A fast, complex and efficient test implementation of the CNN Universal Machine Optoelectronic cellular neural networks based on amorphous silicon thin film technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1