STARE-based Integrative Analysis of Diverse Data Using Dask Parallel Programming Demo Paper

M. Rilee, Niklas Griessbaum, K. Kuo, J. Frew, R. Wolfe
{"title":"STARE-based Integrative Analysis of Diverse Data Using Dask Parallel Programming Demo Paper","authors":"M. Rilee, Niklas Griessbaum, K. Kuo, J. Frew, R. Wolfe","doi":"10.1145/3397536.3422346","DOIUrl":null,"url":null,"abstract":"Scaling up volume and variety in Big Earth Science Data is particularly difficult when combining low-level, ungridded data, such as swath observations obtained with, for example, Moderate Resolution Imaging Spectroradiometers (MODIS). A unified way to index and combine data with different geo-spatiotemporal layouts and incomparable native array formatting is required for scalable integrative analyses based on data at its full instrument resolution, that is, without extra interpolation (or extrapolation) onto a common grid. The SpatioTemporal Adaptive Resolution Encoding (STARE) uses the Hierarchical Triangular Mesh (HTM) and the Hierarchical Calendrical Partitioning (HCP), recursive partitionings of solid angle and time into tree data structures, to encode spatiotemporal neighborhoods as sets of integers. Regions sharing common paths through the STARE tree hierarchy have similar index values, which can then serve as keys in algorithms and data structures supporting scalable integrative analyses. Thus, STARE co-aligns data in both physical (spatiotemporal) and cyber (memory) spaces, providing a means for marshalling computing resources and conducting analysis with minimum data movement, addressing volume scalability while simultaneously unifying diverse data for variety scaling. In this paper, we demonstrate how easy it is to use the Python STARE API (PySTARE) and the parallel programming platform Dask to integrate MODIS and Geostationary Operational Environmental Satellite (GOES) data, datasets with very different geo-spatiotemporal characteristics.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Scaling up volume and variety in Big Earth Science Data is particularly difficult when combining low-level, ungridded data, such as swath observations obtained with, for example, Moderate Resolution Imaging Spectroradiometers (MODIS). A unified way to index and combine data with different geo-spatiotemporal layouts and incomparable native array formatting is required for scalable integrative analyses based on data at its full instrument resolution, that is, without extra interpolation (or extrapolation) onto a common grid. The SpatioTemporal Adaptive Resolution Encoding (STARE) uses the Hierarchical Triangular Mesh (HTM) and the Hierarchical Calendrical Partitioning (HCP), recursive partitionings of solid angle and time into tree data structures, to encode spatiotemporal neighborhoods as sets of integers. Regions sharing common paths through the STARE tree hierarchy have similar index values, which can then serve as keys in algorithms and data structures supporting scalable integrative analyses. Thus, STARE co-aligns data in both physical (spatiotemporal) and cyber (memory) spaces, providing a means for marshalling computing resources and conducting analysis with minimum data movement, addressing volume scalability while simultaneously unifying diverse data for variety scaling. In this paper, we demonstrate how easy it is to use the Python STARE API (PySTARE) and the parallel programming platform Dask to integrate MODIS and Geostationary Operational Environmental Satellite (GOES) data, datasets with very different geo-spatiotemporal characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于stare的多任务并行编程综合分析演示论文
当结合低水平的、未网格化的数据,例如用中分辨率成像光谱仪(MODIS)获得的条带观测数据时,扩大大地球科学数据的容量和多样性尤其困难。需要一种统一的方式来索引和组合具有不同地理-时空布局和无与伦比的本地阵列格式的数据,以便基于其全仪器分辨率的数据进行可扩展的集成分析,也就是说,不需要在公共网格上额外的插值(或外推)。时空自适应分辨率编码(STARE)采用分层三角网格(HTM)和分层日历分区(HCP),将立体角和时间递归划分为树状数据结构,将时空邻域编码为整数集。通过STARE树层次结构共享公共路径的区域具有相似的索引值,这些索引值可以作为支持可扩展集成分析的算法和数据结构中的关键。因此,STARE将物理(时空)和网络(内存)空间中的数据协同对齐,提供了一种编组计算资源的方法,并以最小的数据移动进行分析,解决了容量可扩展性问题,同时将不同的数据统一为各种扩展。在本文中,我们演示了使用Python STARE API (PySTARE)和并行编程平台Dask集成MODIS和地球静止运行环境卫星(GOES)数据是多么容易,这些数据集具有非常不同的地理时空特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poet Distributed Spatiotemporal Trajectory Query Processing in SQL A Time-Windowed Data Structure for Spatial Density Maps Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub Platooning Graph for Safer Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1