OFSF-BC: Online feature selection framework for binary classification

F. B. Said, A. Alimi
{"title":"OFSF-BC: Online feature selection framework for binary classification","authors":"F. B. Said, A. Alimi","doi":"10.1109/AICCSA.2016.7945645","DOIUrl":null,"url":null,"abstract":"Feature selection is a very important technique in machine learning and pattern classification. Feature selection studies using batch learning methods are inefficient when handling big data in real world, especially when data arrives sequentially. Online Feature Selection is a new paradigm which is more efficient than batch feature selection methods but it still very challenging in large-scale ultra-high dimensional sparse domains. In this paper, we propose a framework of online feature selection for binary classification exploiting first-order and second-order information. This framework is designed to assume an efficient and scalable online feature selection process. In the experimental studies, we adopt first-order and second-order online learning based online feature selection methods FOOL-OFS and SOOL-OFS. We conduct extensive experiments to evaluate the learning accuracy and time cost of different algorithms on several benchmarks and some real-world datasets.","PeriodicalId":448329,"journal":{"name":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2016.7945645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Feature selection is a very important technique in machine learning and pattern classification. Feature selection studies using batch learning methods are inefficient when handling big data in real world, especially when data arrives sequentially. Online Feature Selection is a new paradigm which is more efficient than batch feature selection methods but it still very challenging in large-scale ultra-high dimensional sparse domains. In this paper, we propose a framework of online feature selection for binary classification exploiting first-order and second-order information. This framework is designed to assume an efficient and scalable online feature selection process. In the experimental studies, we adopt first-order and second-order online learning based online feature selection methods FOOL-OFS and SOOL-OFS. We conduct extensive experiments to evaluate the learning accuracy and time cost of different algorithms on several benchmarks and some real-world datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二值分类的在线特征选择框架
特征选择是机器学习和模式分类中的一项重要技术。在现实世界中,使用批处理学习方法进行特征选择研究在处理大数据时效率低下,尤其是在数据顺序到达的情况下。在线特征选择是一种比批量特征选择方法更有效的新模式,但在大规模超高维稀疏域仍然具有挑战性。本文提出了一种利用一阶和二阶信息进行二元分类的在线特征选择框架。该框架被设计为一个高效和可扩展的在线特征选择过程。在实验研究中,我们采用基于一阶和二阶在线学习的在线特征选择方法FOOL-OFS和SOOL-OFS。我们进行了大量的实验来评估不同算法在几个基准和一些现实世界数据集上的学习精度和时间成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Foreword — Message from the general chairs Towards a framework for customer emotion detection Development of a thematic and structural elements grid for e-government strategies: Case study of Swiss cantons Complementary features for traffic sign detection and recognition Priority-MAC: A priority based medium access control solution with QoS for WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1