An Accuracy-Driven Compression Methodology to Derive Efficient Codebook-Based CNNs

Flavio Ponzina, Miguel Peón-Quirós, G. Ansaloni, David Atienza Alonso
{"title":"An Accuracy-Driven Compression Methodology to Derive Efficient Codebook-Based CNNs","authors":"Flavio Ponzina, Miguel Peón-Quirós, G. Ansaloni, David Atienza Alonso","doi":"10.1109/COINS54846.2022.9854986","DOIUrl":null,"url":null,"abstract":"Codebook-based optimizations are a class of algorithmic-level transformations able to effectively reduce the computing and memory requirements of Convolutional Neural Networks (CNNs). This approach tightly limits the number of unique weights in each layer, allowing the storage of employed values in codebooks containing a small number of floating-point entries. Then, CNN models are represented as low-bitwidth indexes of such codebooks. This work introduces a novel iterative methodology to find highly beneficial schemes trading off accuracy and model compression in codebook-based CNNs. Our strategy can retrieve non-uniform solutions driven by an accuracy constraint embedded in the optimization loop. Our results indicate that, for a 1% accuracy degradation, our methodology can compress baseline floating-point CNN models up to 19x. Moreover, by reducing the number of memory accesses, our strategy increases energy efficiency and improves inference performance by up to 91%.","PeriodicalId":187055,"journal":{"name":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COINS54846.2022.9854986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Codebook-based optimizations are a class of algorithmic-level transformations able to effectively reduce the computing and memory requirements of Convolutional Neural Networks (CNNs). This approach tightly limits the number of unique weights in each layer, allowing the storage of employed values in codebooks containing a small number of floating-point entries. Then, CNN models are represented as low-bitwidth indexes of such codebooks. This work introduces a novel iterative methodology to find highly beneficial schemes trading off accuracy and model compression in codebook-based CNNs. Our strategy can retrieve non-uniform solutions driven by an accuracy constraint embedded in the optimization loop. Our results indicate that, for a 1% accuracy degradation, our methodology can compress baseline floating-point CNN models up to 19x. Moreover, by reducing the number of memory accesses, our strategy increases energy efficiency and improves inference performance by up to 91%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种精度驱动的基于码本的高效cnn压缩方法
基于码本的优化是一类算法级转换,能够有效地降低卷积神经网络(cnn)的计算和内存需求。这种方法严格限制了每层中唯一权值的数量,允许将已使用的值存储在包含少量浮点项的码本中。然后,将CNN模型表示为这些码本的低位宽索引。这项工作引入了一种新颖的迭代方法,以在基于码本的cnn中找到高度有益的方案,以权衡准确性和模型压缩。我们的策略可以检索由嵌入在优化循环中的精度约束驱动的非均匀解。我们的结果表明,对于1%的精度下降,我们的方法可以将基线浮点CNN模型压缩到19倍。此外,通过减少内存访问次数,我们的策略提高了能源效率,并将推理性能提高了91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Security risks in MQTT-based Industrial IoT Applications Time and Energy trade-off analysis for Multi-Installment Scheduling with result retrieval strategy for Large Scale data processing GANIBOT: A Network Flow Based Semi Supervised Generative Adversarial Networks Model for IoT Botnets Detection COINS 2022 Cover Page Interference Recognition for Fog Enabled IoT Architecture using a Novel Tree-based Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1