Rawia Mhiri, P. Vasseur, S. Mousset, R. Boutteau, A. Bensrhair
{"title":"Visual odometry with unsynchronized multi-cameras setup for intelligent vehicle application","authors":"Rawia Mhiri, P. Vasseur, S. Mousset, R. Boutteau, A. Bensrhair","doi":"10.1109/IVS.2014.6856533","DOIUrl":null,"url":null,"abstract":"This paper presents a visual odometry with metric scale estimation of a multi-camera system in challenging un-synchronized setup. The intended application is in the field of intelligent vehicles. We propose a new algorithm named “triangle-based” method. The proposed algorithm employs the information from both extrinsic and intrinsic parameters of calibrated cameras. We assume that the trajectory between two consecutive frames of a camera is a linear segment (straight trajectory). The relative camera poses are estimated via classical Structure-from-Motion. Then, the scale factors are computed by imposing the known extrinsic parameters and the linearity assumption. We verify the validity of our method both in simulated and real conditions. For the real world, the motion trajectory estimated for image sequence of two cameras from KITTI dataset is compared against the GPS/INS ground truth.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
This paper presents a visual odometry with metric scale estimation of a multi-camera system in challenging un-synchronized setup. The intended application is in the field of intelligent vehicles. We propose a new algorithm named “triangle-based” method. The proposed algorithm employs the information from both extrinsic and intrinsic parameters of calibrated cameras. We assume that the trajectory between two consecutive frames of a camera is a linear segment (straight trajectory). The relative camera poses are estimated via classical Structure-from-Motion. Then, the scale factors are computed by imposing the known extrinsic parameters and the linearity assumption. We verify the validity of our method both in simulated and real conditions. For the real world, the motion trajectory estimated for image sequence of two cameras from KITTI dataset is compared against the GPS/INS ground truth.