Video acuity assessment in mobile devices

E. Baik, A. Pande, Chris Stover, P. Mohapatra
{"title":"Video acuity assessment in mobile devices","authors":"E. Baik, A. Pande, Chris Stover, P. Mohapatra","doi":"10.1109/INFOCOM.2015.7218361","DOIUrl":null,"url":null,"abstract":"The quality of mobile videos is usually quantified through the Quality of Experience (QoE), which is usually based on network QoS measurements, user engagement, or post-view subjective scores. Such quantifications are not adequate for real-time evaluation. They cannot provide on-line feedback for improvement of visual acuity, which represents the actual viewing experience of the end user. We present a visual acuity framework which makes fast online computations in a mobile device and provide an accurate estimate of mobile video QoE. We identify and study the three main causes that impact visual acuity in mobile videos: spatial distortions, types of buffering and resolution changes. Each of them can be accurately modeled using our framework. We use machine learning techniques to build a prediction model for visual acuity, which depicts more than 78% accuracy. We present an experimental implementation on iPhone 4 and 5s to show that the proposed visual acuity framework is feasible to deploy in mobile devices. Using a data corpus of over 2852 mobile video clips for the experiments, we validate the proposed framework.","PeriodicalId":342583,"journal":{"name":"2015 IEEE Conference on Computer Communications (INFOCOM)","volume":"437 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Communications (INFOCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2015.7218361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The quality of mobile videos is usually quantified through the Quality of Experience (QoE), which is usually based on network QoS measurements, user engagement, or post-view subjective scores. Such quantifications are not adequate for real-time evaluation. They cannot provide on-line feedback for improvement of visual acuity, which represents the actual viewing experience of the end user. We present a visual acuity framework which makes fast online computations in a mobile device and provide an accurate estimate of mobile video QoE. We identify and study the three main causes that impact visual acuity in mobile videos: spatial distortions, types of buffering and resolution changes. Each of them can be accurately modeled using our framework. We use machine learning techniques to build a prediction model for visual acuity, which depicts more than 78% accuracy. We present an experimental implementation on iPhone 4 and 5s to show that the proposed visual acuity framework is feasible to deploy in mobile devices. Using a data corpus of over 2852 mobile video clips for the experiments, we validate the proposed framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动设备视频清晰度评估
移动视频的质量通常通过体验质量(QoE)来量化,这通常基于网络QoS测量、用户参与度或观看后的主观评分。这样的量化不足以进行实时评价。他们不能为视觉敏锐度的提高提供在线反馈,而视觉敏锐度代表了最终用户的实际观看体验。我们提出了一种视觉灵敏度框架,可以在移动设备上进行快速在线计算,并提供准确的移动视频QoE估计。我们确定并研究了影响移动视频视觉敏锐度的三个主要原因:空间扭曲、缓冲类型和分辨率变化。它们中的每一个都可以使用我们的框架精确地建模。我们使用机器学习技术建立了一个视觉敏锐度的预测模型,其准确率超过78%。我们提出了在iPhone 4和5s上的实验实现,以表明所提出的视觉灵敏度框架在移动设备上部署是可行的。使用超过2852个移动视频片段的数据语料库进行实验,我们验证了所提出的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ambient rendezvous: Energy-efficient neighbor discovery via acoustic sensing A-DCF: Design and implementation of delay and queue length based wireless MAC Original SYN: Finding machines hidden behind firewalls Supporting WiFi and LTE co-existence MadeCR: Correlation-based malware detection for cognitive radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1