DASC: A DRAM Data Mapping Methodology for Sparse Convolutional Neural Networks

B. Lai, Tzu-Chieh Chiang, Po-Shen Kuo, Wanqiu Wang, Yan-Lin Hung, Hung-Ming Chen, Chi Liu, S. Jou
{"title":"DASC: A DRAM Data Mapping Methodology for Sparse Convolutional Neural Networks","authors":"B. Lai, Tzu-Chieh Chiang, Po-Shen Kuo, Wanqiu Wang, Yan-Lin Hung, Hung-Ming Chen, Chi Liu, S. Jou","doi":"10.23919/DATE54114.2022.9774608","DOIUrl":null,"url":null,"abstract":"The data transferring of sheer model size of CNN (Convolution Neural Network) has become one of the main performance challenges in modern intelligent systems. Although pruning can trim down substantial amount of non-effective neurons, the excessive DRAM accesses of the non-zero data in a sparse network still dominate the overall system performance. Proper data mapping can enable efficient DRAM accesses for a CNN. However, previous DRAM mapping methods focus on dense CNN and become less effective when handling the compressed format and irregular accesses of sparse CNN. The extensive design space search for mapping parameters also results in a time-consuming process. This paper proposes DASC: a DRAM data mapping methodology for sparse CNNs. DASC is designed to handle the data access patterns and block schedule of sparse CNN to attain good spatial locality and efficient DRAM accesses. The bank-group feature in modern DDR is further exploited to enhance processing parallelism. DASC also introduces an analytical model to facilitate fast exploration and quick convergence of parameter search in minutes instead of days from previous work. When compared with the state-of-the-art, DASC decreases the total DRAM latencies and attains an average of 17.1x, 14.3x, and 23.3x better DRAM performance for sparse AlexNet, VGG-16, and ResNet-50 respectively.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE54114.2022.9774608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The data transferring of sheer model size of CNN (Convolution Neural Network) has become one of the main performance challenges in modern intelligent systems. Although pruning can trim down substantial amount of non-effective neurons, the excessive DRAM accesses of the non-zero data in a sparse network still dominate the overall system performance. Proper data mapping can enable efficient DRAM accesses for a CNN. However, previous DRAM mapping methods focus on dense CNN and become less effective when handling the compressed format and irregular accesses of sparse CNN. The extensive design space search for mapping parameters also results in a time-consuming process. This paper proposes DASC: a DRAM data mapping methodology for sparse CNNs. DASC is designed to handle the data access patterns and block schedule of sparse CNN to attain good spatial locality and efficient DRAM accesses. The bank-group feature in modern DDR is further exploited to enhance processing parallelism. DASC also introduces an analytical model to facilitate fast exploration and quick convergence of parameter search in minutes instead of days from previous work. When compared with the state-of-the-art, DASC decreases the total DRAM latencies and attains an average of 17.1x, 14.3x, and 23.3x better DRAM performance for sparse AlexNet, VGG-16, and ResNet-50 respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏卷积神经网络的DRAM数据映射方法
卷积神经网络(convolutional Neural Network, CNN)庞大模型的数据传输已成为现代智能系统的主要性能挑战之一。虽然剪枝可以减少大量的无效神经元,但在稀疏网络中,非零数据的过多DRAM访问仍然主导着系统的整体性能。适当的数据映射可以为CNN实现高效的DRAM访问。然而,以往的DRAM映射方法主要针对密集CNN,在处理稀疏CNN的压缩格式和不规则访问时效果不佳。对映射参数进行广泛的设计空间搜索也会导致耗时的过程。本文提出了一种稀疏cnn的DRAM数据映射方法DASC。DASC设计用于处理稀疏CNN的数据访问模式和块调度,以获得良好的空间局域性和高效的DRAM访问。进一步利用现代DDR中的银行组特性来提高处理并行性。DASC还引入了一个分析模型,以便在几分钟内快速探索和快速收敛参数搜索,而不是以前的工作。与最先进的技术相比,DASC降低了总DRAM延迟,在稀疏的AlexNet、VGG-16和ResNet-50中,平均DRAM性能分别提高了17.1倍、14.3倍和23.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIET: A Dynamic Energy Management Approach for Wearable Health Monitoring Devices NPU-Accelerated Imitation Learning for Thermal- and QoS-Aware Optimization of Heterogeneous Multi-Cores A Precision-Scalable Energy-Efficient Bit-Split-and-Combination Vector Systolic Accelerator for NAS-Optimized DNNs on Edge coxHE: A software-hardware co-design framework for FPGA acceleration of homomorphic computation HELCFL: High-Efficiency and Low-Cost Federated Learning in Heterogeneous Mobile-Edge Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1