{"title":"Estimation of soil moisture based on sentinel-1 SAR data: focusing on cropland and grassland area","authors":"Seongkeun Cho","doi":"10.3741/JKWRA.2020.53.11.973","DOIUrl":null,"url":null,"abstract":"Recently, SAR (Synthetic Aperture Radar) is being highlighted as a solution to the coarse spatial resolution of remote sensing data in water resources research field. Spatial resolution up to 10 m of SAR backscattering coefficient has facilitated more elaborate analyses of the spatial distribution of soil moisture, compared to existing satellite-based coarse resolution (>10 km) soil moisture data. It is essential, however, to multilaterally analyze how various hydrological and environmental factors affect the backscattering coefficient, to utilize the data. In this study, soil moisture estimated by WCM (Water Cloud Model) and linear regression is compared with in-situ soil moisture data at 5 soil moisture observatories in the Korean peninsula. WCM shows suitable estimates for observing instant changes in soil moisture. However, it needs to be adjusted in terms of errors. Soil moisture estimated from linear regression shows a stable error range, but it cannot capture instant changes. The result also shows that the effect of soil moisture on backscattering coefficients differs greatly by land cover, distribution of vegetation, and water content of vegetation, hence that there’re still limitations to apply preexisting models directly. Therefore, it is crucial to analyze variable effects from different environments and establish suitable soil moisture model, to apply SAR to water resources fields in Korea.","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korea Water Resources Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3741/JKWRA.2020.53.11.973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, SAR (Synthetic Aperture Radar) is being highlighted as a solution to the coarse spatial resolution of remote sensing data in water resources research field. Spatial resolution up to 10 m of SAR backscattering coefficient has facilitated more elaborate analyses of the spatial distribution of soil moisture, compared to existing satellite-based coarse resolution (>10 km) soil moisture data. It is essential, however, to multilaterally analyze how various hydrological and environmental factors affect the backscattering coefficient, to utilize the data. In this study, soil moisture estimated by WCM (Water Cloud Model) and linear regression is compared with in-situ soil moisture data at 5 soil moisture observatories in the Korean peninsula. WCM shows suitable estimates for observing instant changes in soil moisture. However, it needs to be adjusted in terms of errors. Soil moisture estimated from linear regression shows a stable error range, but it cannot capture instant changes. The result also shows that the effect of soil moisture on backscattering coefficients differs greatly by land cover, distribution of vegetation, and water content of vegetation, hence that there’re still limitations to apply preexisting models directly. Therefore, it is crucial to analyze variable effects from different environments and establish suitable soil moisture model, to apply SAR to water resources fields in Korea.