{"title":"Greening Municipality Through Carbon Footprint for Selective Municipality","authors":"W. Jutidamrongphan, Luke Makarichi, Samnang Tim","doi":"10.5772/INTECHOPEN.78565","DOIUrl":null,"url":null,"abstract":"Evaluation of the organizational greenhouse gas (GHG) emissions from operational activities of selective municipality was investigated in this study. The selected municipality is located in Songkhla Province, the southern part of Thailand, and is divided into seven functional units. The total GHG emissions were estimated at 16,920.29 ton CO 2 eq. in the fiscal year 2016. The carbon footprint s under direct, indirect, and optional indirect emissions (scopes 1, 2, and 3, respectively) were found to be 1129.92, 255.24, and 15,535.13 ton CO 2 eq./year, respectively. The highest carbon footprint was from methane emis- sions related to solid waste decomposition in sanitary landfills (15,524 ton CO 2 eq./year). Therefore, the main GHG mitigation strategy proposed was the installation of waste to energy recovery in order to reduce waste throughput to the landfill. For specific munici pal operations, diesel combustion in municipality -owned vehicles had the highest carbon emission followed by fugitive emissions from refrigerants and electricity consumption (746.92, 289.60, and 255.24 ton CO 2 eq./year, respectively). The important constraints in reducing GHG emissions from upstream and downstream of the organizational activities were identified in terms of time, cost , and data accessibility. Further, convergent coopera - tion and public participation are also significant for effective implementation of global warming mitigation strategies.","PeriodicalId":236689,"journal":{"name":"Low Carbon Transition - Technical, Economic and Policy Assessment","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Carbon Transition - Technical, Economic and Policy Assessment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.78565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Evaluation of the organizational greenhouse gas (GHG) emissions from operational activities of selective municipality was investigated in this study. The selected municipality is located in Songkhla Province, the southern part of Thailand, and is divided into seven functional units. The total GHG emissions were estimated at 16,920.29 ton CO 2 eq. in the fiscal year 2016. The carbon footprint s under direct, indirect, and optional indirect emissions (scopes 1, 2, and 3, respectively) were found to be 1129.92, 255.24, and 15,535.13 ton CO 2 eq./year, respectively. The highest carbon footprint was from methane emis- sions related to solid waste decomposition in sanitary landfills (15,524 ton CO 2 eq./year). Therefore, the main GHG mitigation strategy proposed was the installation of waste to energy recovery in order to reduce waste throughput to the landfill. For specific munici pal operations, diesel combustion in municipality -owned vehicles had the highest carbon emission followed by fugitive emissions from refrigerants and electricity consumption (746.92, 289.60, and 255.24 ton CO 2 eq./year, respectively). The important constraints in reducing GHG emissions from upstream and downstream of the organizational activities were identified in terms of time, cost , and data accessibility. Further, convergent coopera - tion and public participation are also significant for effective implementation of global warming mitigation strategies.