An Adaptive Learning Automata for Genetic Operators Allocation Probabilities

Korejo Imtiaz Ali, K. Brohi
{"title":"An Adaptive Learning Automata for Genetic Operators Allocation Probabilities","authors":"Korejo Imtiaz Ali, K. Brohi","doi":"10.1109/FIT.2013.18","DOIUrl":null,"url":null,"abstract":"The conventional Genetic algorithms (GAs) use a single mutation operator for whole population, It means that all solutions in population apply same leaning strategy. This property may cause lack of intelligence for specific individual, which is difficult to deal with complex situation. Different mutation operators have been suggested in GAs, but it is difficult to select which mutation operator should be used in the evolutionary process of GAs. In this paper, the fast learning automata is applied in GAs to automatically choose the most optimal strategy while solving the problem. Experimental results on different benchmark problems determines that the proposed method obtains the fast convergence speed and improve the performance of GAs.","PeriodicalId":179067,"journal":{"name":"2013 11th International Conference on Frontiers of Information Technology","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2013.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The conventional Genetic algorithms (GAs) use a single mutation operator for whole population, It means that all solutions in population apply same leaning strategy. This property may cause lack of intelligence for specific individual, which is difficult to deal with complex situation. Different mutation operators have been suggested in GAs, but it is difficult to select which mutation operator should be used in the evolutionary process of GAs. In this paper, the fast learning automata is applied in GAs to automatically choose the most optimal strategy while solving the problem. Experimental results on different benchmark problems determines that the proposed method obtains the fast convergence speed and improve the performance of GAs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传算子分配概率的自适应学习自动机
传统的遗传算法对整个种群使用单个突变算子,这意味着种群中的所有解都采用相同的学习策略。这种特性可能导致对特定个体缺乏智能,难以处理复杂的情况。在遗传算法中已经提出了不同的突变算子,但在遗传算法的进化过程中选择哪种突变算子是很困难的。本文将快速学习自动机应用于遗传算法中,在求解问题时自动选择最优策略。在不同基准问题上的实验结果表明,该方法具有较快的收敛速度,提高了遗传算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical Model for Delay Distribution of PRMAC On the Fly Test Suite Optimization with FuzzyOptimizer Software Engineering Challenges for Ubiquitous Computing in Various Applications bugMLX: Extended Software Bug Markup Language Image Clustering Using Discriminant Image Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1