Traffic Sign Recognition Based on Deep Learning Technique

Yihan Lai
{"title":"Traffic Sign Recognition Based on Deep Learning Technique","authors":"Yihan Lai","doi":"10.1145/3546157.3546167","DOIUrl":null,"url":null,"abstract":"Traffic sign recognition plays a significant role in intelligent transportation system. Therefore, in this paper, I propose a traffic sign recognition algorithm based on Convolutional Neural Network (CNN). The dataset collected to train and test in experiments is the “German Traffic Sign Recognition Benchmark” (GTSRB). In addition, the CNN model is evaluated by comparing with a Deep Neural Network (DNN) model based on the accuracy rate and loss rate. Finally, the result shows the proposed CNN model yields high accuracy rate on both training and test images.","PeriodicalId":422215,"journal":{"name":"Proceedings of the 6th International Conference on Information System and Data Mining","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information System and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546157.3546167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic sign recognition plays a significant role in intelligent transportation system. Therefore, in this paper, I propose a traffic sign recognition algorithm based on Convolutional Neural Network (CNN). The dataset collected to train and test in experiments is the “German Traffic Sign Recognition Benchmark” (GTSRB). In addition, the CNN model is evaluated by comparing with a Deep Neural Network (DNN) model based on the accuracy rate and loss rate. Finally, the result shows the proposed CNN model yields high accuracy rate on both training and test images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习技术的交通标志识别
交通标志识别在智能交通系统中起着重要的作用。因此,在本文中,我提出了一种基于卷积神经网络(CNN)的交通标志识别算法。收集的数据集用于训练和实验测试是“德国交通标志识别基准”(GTSRB)。此外,通过与深度神经网络(Deep Neural Network, DNN)模型的准确率和损失率对比,对CNN模型进行了评价。最后,实验结果表明,本文提出的CNN模型在训练图像和测试图像上都有较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Simplifying and Formalizing UML Class Diagram Generalization/Specialization Relationship with Mathematical Set Theory A Nonsynaptic Memory Based Neural Network for Hand-Written Digit Classification Using an Explainable Feature Extraction Method Docker Container based Crowd Control Analysis Using Dask Hadoop Framework Engaging Undergraduate Students in an Introductory A.I. Course through a Knowledge-Based Chatbot Workshop Examining User Acceptance and Adoption of the Internet of Things in Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1