Energy Efficient-based Sensor Data Prediction using Deep Concatenate MLP

Made Adi Paramartha Putra, Ade Pitra Hermawan, Dong-Seong Kim, Jae-Min Lee
{"title":"Energy Efficient-based Sensor Data Prediction using Deep Concatenate MLP","authors":"Made Adi Paramartha Putra, Ade Pitra Hermawan, Dong-Seong Kim, Jae-Min Lee","doi":"10.1109/ETFA45728.2021.9613213","DOIUrl":null,"url":null,"abstract":"This paper proposes a system to reduce sensor energy consumption by predicting the next sensor value. The current implementation of the smart factory utilizes wireless sensor network nodes to monitor the environmental condition in real-time. Instead of periodically exploiting those nodes, a deep learning prediction-based algorithm is proposed in the cluster head to reduce sensing times and increase sensor lifetime. The cluster head can learn the behavior of each sensor nodes based on its previous value. The proposed scenario can be combined with existing solutions in sensor failure detection and recovery to provide a robust solution in the industrial environment.","PeriodicalId":312498,"journal":{"name":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA45728.2021.9613213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper proposes a system to reduce sensor energy consumption by predicting the next sensor value. The current implementation of the smart factory utilizes wireless sensor network nodes to monitor the environmental condition in real-time. Instead of periodically exploiting those nodes, a deep learning prediction-based algorithm is proposed in the cluster head to reduce sensing times and increase sensor lifetime. The cluster head can learn the behavior of each sensor nodes based on its previous value. The proposed scenario can be combined with existing solutions in sensor failure detection and recovery to provide a robust solution in the industrial environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度连接MLP的节能传感器数据预测
本文提出了一种通过预测下一个传感器值来降低传感器能耗的系统。目前智能工厂的实现是利用无线传感器网络节点实时监测环境状况。本文提出了一种基于深度学习预测的算法来减少感知次数,提高传感器的使用寿命,而不是周期性地利用这些节点。簇头可以根据每个传感器节点的前一个值来学习其行为。所提出的方案可以与传感器故障检测和恢复的现有解决方案相结合,为工业环境提供强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Optimal Order Assignment Algorithm for Single-Rate Time-Driven AFAP Cyclic Executives Demonstrating Reinforcement Learning for Maintenance Scheduling in a Production Environment Investigation in IoT and 5G architectures for deployment of Artificial Intelligence into urban mobility and production Towards a Robust MMIO-based Synchronized Clock for Virtualized Edge Computing Devices LETRA: Mapping Legacy Ethernet-Based Traffic into TSN Traffic Classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1